£.5¢e.°

EMZITHMH AEAOMENCN & MHXANIKH MABHIH

STOCHASTIC PROCESSES & OPTIMIZATION IN
MACHINE LEARNING

Reinforcement Learning - Dynamic Programming:
1. Markov Decision Processes
2. Bellman’s Optimality Criterion
3. Policy Iteration Algorithm
4. Value Iteration Algorithm

Prof. Vasilis Maglaris
maglaris@netmode.ntua.gr
www.netmode.ntua.gr
Room 002, New ECE Building
Tuesday April 8, 2025

NTUA - National Technical University of Athens, DSML - Data Science & Machine Learning Graduate Program

mailto:maglaris@netmode.ntua.gr
http://www.netmode.ntua.gr/

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

Reinforcement Learning - Markov Decision Processes
Supervised Learning - Teacher

Machine Learning (ML) configuration tuning in training phase assisted by external supervisor
(teacher), aware of the desired output for all labeled examples in a pre-existing training
dataset, tested for generalization when the system is fed by new test data
Unsupervised Learning
Self-tuning of ML configuration, based on properties of a pre-existing unlabeled training
examples, tested for generalization when the system is fed by new test data
Reinforcement Learning (RL)
(Andrew Barto & Richard Sutton, Turing Awards 5/3/2025)

* The actions of an agent in a horizon of K steps may control the evolution of the states of the

environment with cost/reward in current step and anticipated in future state trajectories
* RL involves policy planning of states and actions of the agent towards medium-long term

goals via interactive learning scenarios
* RL theoretical models: Dynamic Programming (DP), Markov Decision Processes (MDP)
* The training dataset may be dynamically (on-line) specified/updated to reflect decisions of

the agent on the state evolution (no pre-existence of a training dataset is required)

State * Training examples in Supervised & Unsupervised Learning are
= Agent usually modeled as independent random variables/vectors in
sufficiently large training subsets of the sample space
T(‘”Sl * In Reinforcement Learning system configuration is usually
based on scenarios of dynamic evolution of Markov
Environment [<— environment states, that depend on control actions of an

Action Agent associated with a certain cost/reward

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Reinforcement Learning - Markov Decision Processes (1/2)
Markov Decision Processes (MDP) Model: State, Action, Cost, Policy
Finite Sample Space X of discrete environment states in stepsn = 0,1,2, ..., K
The Random Variable X,, € X assumes discrete values X,;, =i, 1<i <N

Finite Sample Space A; of discrete actions of the agent if the environment stateis X,, =i
The Random Variable A,, € A; of action at step n assumes values a;, when X,, =i

Environment State Transitions: Markov p;;(a) from i to j with the agent enforcing action a
in transition stepsn =0,1,2, ..., K
pij(a) = P(Xpy1 = jlXn =i, 4y =0a), pij(a) =20, X;pij(a) =1

The observed cost of a state transition (X,,= i) = (X,,.+.1=J) with agent action a;; is
g(i,a;, j) or, anticipated n steps ahead, y" g (i, a;;, j) with a discount factor 0 <y < 1

v If y = 0 the agent is not concerned for the longer-term impact of current action (myopic)
v' Asy — 1 the agent actions are determined by their impact on the environment evolution

A policy 1 = {lg, Wy, - Uy ---» Mg —1} CONsists of functions p,, that map states X,, = i at step
n into agent action 4,, = a
W, (i) € A; for all states i € X (m admissible policies)

If w, (i) = (i) for all steps n, policy m = {y, 1, ... } is stationary and
transitions p;;(a) identify a stationary Markov Chain (X, = i) = (Xp41=J)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Reinforcement Learning - Markov Decision Processes (2/2)
Policy Optimization
The total cost is estimated over possible trajectories in finite steps K (Finite-Horizon) of
repeated sample episodes (or as K — oo in Infinite-Horizon scenarios) summing the observed
costs of Markov Transitions X,, = X,,+1 under action p,,(X,,):

vg(XTl' l’l‘Tl (Xn)» Xn+1)

The Total Discounted Expected Cost-to-Go for finite-horizon K and policy T = {ug, Uy, ..., Mg —1}
from an initial state X, = i and with discount factor v is:

K
JU() =E Z yng(an un(Xn)an+1)|X0 =1

n=0
where the expectation refers to Markov Chain trajectory frequencies from X, = i in K steps
An optimal policy Tt minimizes J™(i): J*(i) £ min /™ (i)
TC
The optimal policy is greedy in the sense that the agent minimizes the Expected Cost-to-Go

J™ (i) from initial state X, = i without considering better alternatives in the future as the
environment proceeds to a trajectory identified by t

If the policy space is confined to stationary decisions, T = {y, J, ... } independent
of the transition step n, then J™(i) £ J*(i) and the problem is to search for the
function p(X,,) that minimizes J*(i) = J*(i) for all initial states X, = i

Note: Optimization objectives other than Total Discounted Expected Cost-to-Go include the Expected
Average Cost per step in Infinite Horizon with no discount (Sheldon Ross, “Applied Probability Models
with Optimization”, Dover, 1992)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Principle of Optimality (Bellman 1957) - Finite Horizon Problem

Let an MIDP with transition costs g,,(X,, W, (X)), Xni1) 2 Y9 (X, Uy (X5), X4 1), at step
n < K and terminal cost gx (Xk). The Expected Cost-to-Go in K step expected trajectories
{Xo, X1, .., Xg}is:

K-1

Jo(Xo) = E|{9x(Xk) + z In(Xn, e (X)), Xna1) ¢ | Xo
n=0
An optimal policy m* = {uy, Ui, 13, ---, Lg—1 } leads the environment in n steps, n < K, to
possible state sub-trajectories {X,, X, ..., X, }. The Expected Cost-to-Go for the tail sub-

trajectory {X,, .1, Xpn42,.., Xk }is:
K-1

In() = B[S g (i) +) 01 Xie e (Ki), X | X
k=n

Then the truncated policy {U,, Ln+1, -, Lg—1} IS optimal for the tail-process (subproblem)
{Xn+1, Xns2,--» Xg} with initial state X,, (Principle of Optimality)

Justification: if the truncated policy were not optimal, then the overall optimal policy *

for the remainder steps {n + 1,n + 2, ..., K}, thus yield lower total trajectory cost than
anticipated using "

would lead the environment up to state X,,. The agent could subsequently change the policy

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Dynamic Programming (Bellman 1957) - Finite Horizon Problem

The Bellman Principle of Optimality leads to Dynamic Programming formulation for
determining an Optimal Policy " = {u3, 11, U3, ..., Wg—1 } in three stages by reversing the
state transitionorder: K > (K—-1) > (K—-2) > :->1->0

» Determine the optimal policy px_; for the final step Xx_; = Xy for all possible Xy
» For the tail subproblem Xy_, = Xx_, = Xk deterime py_, without changing pux_
» Repeat until reaching X,. 1 , completing the search for the overall optimal policy *

Dynamic Programming Algorithm
1. Start with Jx (Xx) = gx(Xg) for all terminal states Xy

2. Forn={K —1,K — 2, ..., 1,0} evaluate recursively the tail Expected Cost-to-Go J,,(X;,)
for all intermediate states X,, and optimal policies u,,(X;,) of the tail subproblems using
the recursive formula of greedy decisions:

Jn(Xn) = ugga) Elgn(Xn, tn(Xn), Xn+1) + Jne1 Xns1)]

The average in the formula refers to all possible states X,, ¢

3. Final determination of J,(X,) for all initial states X, and actions p; that complement
identification of optimal policies m* = {ug, U3, --., Ux—1} that satisfy the recursive formula

4. For stationary policies T = {|, I, ... } the recursive formula is simplified by letting p,, = n

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

Optimality Equations - Infinite Horizon Problem, Stationary Policy
Let an MDP of fimite states X,, € {1,2, ..., N}, stationary policies 1, discount vy, transition costs

In (X, W(X), Xnt1) 2 Y9 (X, u(X;), X,,4+1) and starting from initial state X,
Find a stationary policy T minimizing the Expected Cost in Infinite Horizon n — oo trajectories

* The recursive dynamic programming formula is re-formulated by reversing the trajectory
evolution, starting from initial states X, over a finite horizon n < K:
Jn+1(Xo) = min E[(g(Xo, p(Xo), X1) + ¥/n(X1))|Xo] with initial condition Jo(X) = 0,VX
1l

 Over infinite horizon and X, = i the optimal policy T yields costs J*(i) = I}im Jx (), Vi=>
INOE ngn E[(g(, u(@), X1) +v/"(X1))|Xo =]
* Define c(i, u(i)) the Immediate Expected Cost of environment state X, = i and action u(i):

N
(i, 1) £ Blg,u, X, = NIXo = i =) piyR()gGn(D,)
j=1
The average term refers to possible states X; resulting from X, in one-step transitions

* The optimal p yields one-step transition cost E[J*(X1)|X, = i] = Z?’zl pii (W] ()

We obtain N equations referred to as Bellman’s Optimality Equations:

N
J*(@) = min (L u®) +v) pywG'G) |, i=12.N
j=1

These N equations determine J* (i) via Policy Iteration or Value Iteration algorithms
Caution: We assume knowledge of p;;(a) in what is referred to as Model-based learning

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

Model-based Learning: Policy Iteration (1/2)
Q-factors

» Astationary policy m = {|, , ... } leads to costs-to-go J"(i), Vi € X (the environment state

space) with agent action a = u(i) € A;
» At every step and for all (i, a) pairs and tail-policies T = {y, J, ... } define the Q-factors

Q" (i, a) as a comparison metric of alternative direct agent actions a € A; that would lead

the environment from present state i to state j with expected costs-to-go J*(j),Vj € X
N
Q“(i,a) = c(i,a) + Yz pij(@ J* ()
j=1

e A stationary policy T = {l, I, ... } satisfies the greedy conditions regarding the expected
costs-to-go JM(j) for the remaining transitions, if the agent at every step and Vi €
Xselects a = (i) so that

Q"(i,n(D)) = min Q“(i,), vi € X
Aty
* Apolicy m* = {u*, 4, ... } is optimal for all steps if it satisfies the greedy conditions tof
dynamic programming:
Q" (i, 1" (0)) = min Q¥ (i, a)
aEc/li

Note: In a dual formulation cost minimization is translated as reward maximization, costs
c(i,a) are defined as rewards r(i,a), the costs-to-go J*(i) are referred to as Value
Functions V*(i), and the Q-factors are:

Q" (i, @) £ 7(i,a) + v EjZ1 pij(@) V() and Q¥ (i, p* (1)) = max Q" (i, @)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING

Model-based Learning: Policy Iteration (2/2)
Actor - Critic Architecture

(A.G. Barto, R.S. Sutton & C.W. Anderson, "Neuronlike adaptive elements that can solve difficult learning
control problems," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, Sept. — Oct. 1983)

lterations n = 0,1,2, ... of steps until convergence: w4, (i) = u,, (i), JH*+1 (i) = J¥n (i), Vi
Step 1. Policy Evaluation (the critic evaluates the agent actions):
Based on current policy 1t,, = {l,;, Wy, .- } €valuate costs-to-go:

Jin (@) = (i pn (D) + v ZJo1 Py (n (D) JH () for Vi
For Vi and Va € A; evaluate Q-factors: Q" (i,a) = c(i,a) + yZ?Llpij(a)]“"(j)
Step 2. Policy Improvement (the actor guides the agent decisions):
Policy T, is updated to m,,,; by updating u,,,,(i) = arg rrelzfrll Q" (i,a) fori =1,2,...,N

a i

Cost-to 20

function

TABLE 12.1 Summary of the Policy Iteration Algorithm
J Q-factor:

1. Start with an arbitrary initial policy . O"(i,a)
2. Forn=0,1,2,....compute J*(i) and Q" (i, a) for all states i € & and actions a € ;.

3. For each state i, compute
Policy Policy
i) = ar i Paf § “ . /
M1 (7) arg :Ilzlﬂ (i a) evaluation improvement
4. Repeat steps 2 and 3 until p,,,, is not an improvement on p,,, at which point the algorithm termina A
with v, as the desired policy.
Policy
. v o —
argmin f(x) "

[ransition

The value of independent variable x for which f(x) reaches a minimum

probabilities

The algorithm converges to an optimal policy in finite steps n due to finite state-space
N and finite action space

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Model-based Learning: Value Iteration Algorithm

Estimation of Cost-to-Go via Successive Approximations /,,(i) — J,,+1(i)

Start with arbitrary initial values for J, (i), Vi
Iterate n — n + 1 until acceptable convergence (In theory n — o0) via Bellman’s equations
Final evaluation of (sub)optimal Costs-to-Go:

J*(@) = lim Jo(D), Q*(i,@) = c(i,a) +y Xjoa pij(@) " ()

and determination of optimal policy: p*(i) = arg rrelgll Q*(i,a) ywi=12,..,N
GEA

l

TABLE 12.2 Summary of the Value Iteration Algorithm

1.
2.

|75

Start with arbitrary initial value Jy(i) for state i = 1,2, ..., N.
Forn =0,1,2, ..., compute

y a € sl

J,q(i) = f,‘l:i,f}: {c(zza) + y;‘ipq(au”(j}‘}, ;= 1“2“"‘ N
Continue this computation until

(i)

where € is a prescribed tolerance parameter. It is presumed that e is sufficiently small for J,(i) to be
close enough to the optimal cost-to-go function J*(7). We may then set

T(i) = J*(i)

T (i) < e for each state ¢

for all states ¢

. Compute the Q-factor

for @ € 4l; and

N
Q*(i,a) = c(i,a) + 'sz.lpij(a}"r*(ﬂ i=1.2...N

Hence, determine the optimal policy as a greedy policy for J*(f):

w*(i) = arg min Q*(i, a)

* The Value Iteration algorithm, if it

converges in an acceptable run-
time, avoids evaluations of Q-
factor and policy updates at every
step unlike Policy Iteration
Assumes (as Policy Iteration) a
priori knowledge of p;;(a)
(Model-based Learning)
Alternatively Model-free Learning
methods search for optimal
policies without prior knowledge
of p;j(a), e.g. via Monte Carlo
trajectory simulations, algorithms
for Q-Learning estimation...

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING |
Dynamic Programming Example: The Stagecoach Problem
Determine the least cost path (route) from Node A to Node] via the directional
graph in the figure, with directions pointing L > R
Representative Edge Costs: A —- B:2,B = A:

B—->F:4,F - B:oo \ X
Representative Path Cost: Path {4,B,F,1,]J}: 2+4+3+4 =13 (®)
Environment State: Node under consideration {4, B, ..., J} .
Agent Action: Next node in the path {up, down, staight} ﬁ ‘

Recurive Evaluation of Q-Factors (the best choices in bold):
Q(H,down) = 3, Q(I,up) =4
Q(E,staight) =1+ 3 =4, Q(E,down) =4+4 =8
Q(F,up) =6+ 3 :79, mQ(If',down) =3+4=7 o

E H

D \(_I/ 3
Direction of Edges Optimal Path Cost 11:
L (Left) = R (Right) {A,C,E,H,]},{A,D,E,H,]},{A,D,F,1,]}

Dynamic Programming Algorithms (Bellman-Ford) support global Internet Routing (Border Gateway Protocols - BGP)
specified by the ~78,000 Autonomous Systems (AS) of the Internet to the ~1,000,000 known network destinations

	Slide 1
	Slide 2: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Reinforcement Learning - Markov Decision Processes
	Slide 3: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Reinforcement Learning - Markov Decision Processes (1/2)
	Slide 4: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Reinforcement Learning - Markov Decision Processes (2/2)
	Slide 5: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Principle of Optimality (Bellman 1957) – Finite Horizon Problem
	Slide 6: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming (Bellman 1957) – Finite Horizon Problem
	Slide 7: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Optimality Equations - Infinite Horizon Problem, Stationary Policy
	Slide 8: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Model-based Learning: Policy Iteration (1/2)
	Slide 9: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Model-based Learning: Policy Iteration (2/2)
	Slide 10: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Model-based Learning: Value Iteration Algorithm
	Slide 11: STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING Dynamic Programming Example: The Stagecoach Problem

