
Prof. Vasilis Maglaris
maglaris@netmode.ntua.gr

www.netmode.ntua.gr
Room 002, New ECE Building
Tuesday February 25, 2025

STOCHASTIC PROCESSES & OTIMIZATION IN 
MACHINE LEARNING
Unsupervised Learning

𝑲-Means Clustering
Principal Component Analysis (PCA) 

Autoencoders

NTUA - National Technical University of Athens, DSML - Data Science & Machine Learning Graduate Program



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Some Special Neural Network Configurations - Supervised Learning

Support Vector Machines (SVM): Binary classification into 
regions of maximum linear separation via supervised 
learning. Regions are separated by linear neutral border 
zones as wide as possible, defined by support vectors as 
shown in the two-dimensional adjacent figure. Sample 
elements belong in two classes, depicted as blue squares and 
circles. In case of non-separable patterns, regions result from 
the training sample that minimize classification errors

Convolutional Neural Networks (CNN): Multilayer Perceptron
category preferred for classification of two-dimensional 
examples (e.g. pattern recognition of images) via supervised 
learning. The CNN simplification results by decoupling the net 
into loosely connected parts with common receptive fields 
among subsets of input element features and exhibiting
convolutional induced local fields



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Some Special Neural Network Configurations – Unsupervised Learning & LLM

K - Means Clustering: Self-organization of observed sample elements 𝐱௜ into K clusters via 

unsupervised learning, e.g. clustering based on proximity of Euclidean Distances 𝐱௜ − 𝐱௝
ଶ

Principal Components Analysis (PCA): Unsupervised learning used to map sample vectors of 
high dimensionality, e.g. images, 𝐱 = 𝑥ଵ  𝑥ଶ … 𝑥௠

୘ into output vectors 𝐲 = 𝑦ଵ 𝑦ଶ … 𝑦௟
୘ of 

𝑙 ≪ 𝑚 Principal Components by selecting the most important features (feature engineering). 
Used to overcome the curse of dimensionality for image reconstruction, pattern classification…

Self-Organizing Maps (SOM): Neurons are placed on vertices of a two-dimensional lattice and 
converge into maps of location-based significant traits (features) via competitive unsupervised 
learning. Identification of active neurons is learned by boosting or attenuating weights of paths 
between neurons in the lattice, aiming at the final winner selection (winner takes all)

Large Language Models (LLM): Used to identify missing words (masked tokens) or sentences, 
generate (via GenAI) answers to chatbot and/or search engine queries, translate to alternate 
natural languages… They employ Natural Language Processing (NLP) algorithms (e.g. Attention 
Mechanism based Transformers), may rely on special hardware (e.g. GPUs) and can require 
extensive pre-training in massive datacenters (possibly months of parameter tuning with 
billions of data elements). Offered (free or for-a-fee) to tens of millions of end-users as a cloud 
service via the Web, usually with a reasoning option. Users may upload reduced models in their 
machines (e.g. laptops). Very recent killer applications: ChatGPT (OpenAI), DeepSeek. Risks 
include prediction errors - hallucinations, IPR infringement, plagiarism, excessive reliance to 
black-box Artificial Intelligence methods… 

Tutorial by Mirella Lapata https://www.youtube.com/watch?v=_6R7Ym6Vy_I&t=1894s



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
Unsupervised Learning

• Unsupervised learning is based on estimating a-priori probabilities 𝑝(𝐱) of sample elements
(vectors) 𝐱 = 𝑥ଵ 𝑥ଶ … 𝑥௠

஋ with 𝑚 features 𝑥௜ (e.g. K -Means Clustering – selection of K
centers of gravity or cluster centroids and assignment of vectors 𝐱 into closest centroids)

• It is  based on input feature statistics estimated from unlabeled training examples and 
assumptions of the environment behavior (e.g. Hebb’s rule). The system assigns an output 
𝑦 = ℎ𝐰(𝐱) (e.g. compressed image or class of 𝐱) consistent with models inferred from user 
requirements and conforming to pre-stored experience

• Apart from training & validation examples used to design the system, test data are normally 
added to assess a trained model ℎ𝐰 ȉ  generalization capability and overfitting risk

• Unsupervised learning is a widely employed method of self organization (e.g. Self-
Organizing Maps - SOM, Autoencoders) and of principal component filtering for efficient 
storage - processing – classification of sample vectors with massive number of features 
(typical in speech - text - image processing applications and pattern recognition models

Note: Definition of Sample, Sample Elements & Sample Space in Statistics
A sample is defined as a subset of a superset, referred to as sample space, that 
approximately exhibits its statistical properties. It consists of 𝑁 sample elements
(examples), typically vectors 𝐱 = 𝑥ଵ 𝑥ଶ … 𝑥௠

஋ with coordinates 𝑥௜ encoding the 
𝑚 features (characteristics) of 𝐱



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
K - Means Clustering via Unsupervised Learning

Encoding into K clusters of 𝑁 unlabeled training examples 𝐱(𝑛) = 𝑥ଵ 𝑛  𝑥ଶ 𝑛 … 𝑥௠(𝑛) ஋

• Determination of Encoder 𝐶 𝑛 = 𝑗: 𝐱(𝑛), 𝑛 = 1,2, … , 𝑁 belongs to cluster 𝑗 = 1,2, … , 𝐾
• Symmetric Measure of Similarity: 𝑑 𝐱 𝑛 , 𝐱(𝑛ᇱ) = 𝑑 𝐱 𝑛ᇱ , 𝐱(𝑛)

Example: Euclidean Distance, 𝑑 𝐱 𝑛 , 𝐱(𝑛ᇱ) ≜ 𝐱 𝑛 − 𝐱(𝑛ᇱ) ଶ

• Estimation of centroid 𝛍ෝ௝ as center of gravity of cluster 𝑗 = 1,2, … , 𝐾: Mean Euclidean 
Distance of 𝐱 𝑖 from 𝛍ෝ௝ for all encoder options 𝐶 𝑛 = 𝑗

• Cost: 𝐽 𝐶 =
ଵ

ଶ
∑ ∑ ∑ 𝐱 𝑛 − 𝐱(𝑛ᇱ) ଶ =஼ ௡ᇲ ୀ௝஼ ௡ ୀ௝

௄
௝ୀଵ ∑ ∑ 𝐱 𝑛 − 𝛍ෝ௝

ଶ

஼ ௡ ୀ௝
௄
௝ୀଵ

• Minimization Criterion: Variance  𝛔ෝ௝
ଶ ≜ ∑ 𝐱 𝑛 − 𝛍ෝ௝

ଶ

஼ ௡ ୀ௝ ,  min
஼

𝐽 𝐶 = min
஼

∑ 𝛔ෝ௝
ଶ௄

௝ୀଵ

Initialize
Centroids 

Next Cluster
Formation

Determination of 
New Centroids

Initial Cluster
Formation

Example: 𝐾 = 3, 𝑁 = 12
(https://en.wikipedia.org/wiki/K-
means_clustering) 

Self-Organization of 𝑁 Training Sample Points into K Clusters
• Initialization: Arbitrary selection of hyperparameter K
• Assign the 𝑁 training sample points 𝐱(𝑛) to the closest centroid
• Update centroid selection 𝛍ෝ௝, 𝑗 = 1,2, … , 𝐾 & re-evaluate assignment of encoders 𝐶 𝑛 = 𝑗

• Efficient & easy to code algorithm but with no formal convergence proof
• The choice of K may involve several trials and variance comparisons by increasing K up to 

knee of the minimum cost
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Principal Components Analysis - PCA

The Curse of Dimensionality: 
In a sample space of vectors 𝐱 = 𝑥ଵ  𝑥ଶ … 𝑥௠

୘, encoding of features (categorical or 
continuous) may lead to a large number of dimensions 𝑚 (e.g. number of pixels in an image)
Rule of Thumb: For statistically meaningful encoding of the 𝑚 features, it is empirically 
required a number of 𝑁 sample vectors that is a multiple of 𝑚
(e.g. 𝑁 ≫ 5𝑚, https://en.wikipedia.org/wiki/Curse_of_dimensionality)

Reduction of Dimensionality - Principal Components:
A vector space of 𝐱 = 𝑥ଵ  𝑥ଶ … 𝑥௠

୘ the 𝑚 coordinates can be mapped into orthogonal 
(uncorrelated) Principal Components, ordered by their significance. The next step is to 
truncate insignificant components and obtain an output vector 𝐲 = 𝑦ଵ 𝑦ଶ … 𝑦௟

୘ by 
selecting the 𝑙 ≪ 𝑚 principal features

Methods for Selecting Principal Components:
• The Covariance Method: Statistical analysis of the training sample space, linear 

transformation of its 𝑚 coordinates using an orthonormal basis and selecting the 𝑙 ≪ 𝑚
principals via Linear Algebra methods (similar to the Karhunen - Loève Expansion with 
orthogonal deterministic basis functions in Time-Series Theory
https://en.wikipedia.org/wiki/Kosambi%E2%80%93Karhunen%E2%80%93Lo%C3%A8ve_t
heorem)

• The Hebbian Learning Method: Via self-organized Neural Network models with Hebbian
local tuning in unsupervised learning



Covariance Method - Definitions

• Input: Sample elements (vectors) 𝐱 = 𝑥ଵ  𝑥ଶ … 𝑥௠
୘of 𝑚 features encoded in 𝑥௜ values

• Coordinates 𝑥௜: Sample Values of Random Variables 𝑋௜, the coordinates of random vectors 
𝚾 = 𝑋ଵ 𝑋ଶ … 𝑋௠

୘ of the training sample space. We assume that E 𝐗 = E 𝑋௜ = 0

• Correlation Matrix: The symmetric matrix (𝑚 × 𝑚) 𝐑 = E[𝐗 𝐗୘] with elements E 𝑥௜ 𝑥௝ , 
eignevectors 𝐪௝ and eigenvalues λ௝:  𝐑𝐪௝ = λ௝𝐪௝,  𝑗 = 1,2, … , 𝑚 in decreasing order of λ௝

λ௝𝐪௝
୘𝐪௞ = ቊ

1, 𝑘 = 𝑗
0, 𝑘 ≠ 𝑗

     and     𝐪௝
୘𝐑𝐪௞ = ቊ

λ௝, 𝑘 = 𝑗

0, 𝑘 ≠ 𝑗

• Principal Components: The eigenvectors 𝐪௝ define Orthonormal Principal directions that 
via linear transformation map a random vector 𝐱 = 𝑥ଵ 𝑥ଶ … 𝑥௠

୘ of 𝑚 coordinates 𝑥௜

into the random vector     𝐚 = 𝑎ଵ 𝛼ଶ … 𝛼௠
୘ = 𝐱୘𝐪ଵ   𝐱୘𝐪ଶ  …  𝐱୘ 𝐪௠ of 𝑚 coordinates

𝑎௜ referred to as Principal Components

 The order of 𝛼௝’s follows the decreasing order of λ௝ = 𝐪௝
୘𝐑𝐪௝ = 𝑣𝑎𝑟 𝐴௝ ≜ σ௝

ଶ,  with 
𝐴௝ a random variable with sample value 𝛼௝

 The original coordinates 𝑥௜ are uniquely deduced from the Principal Components:

𝐱 = ෍ 𝑎௝𝐪௝

௠

௝ୀଵ

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
Orthonormal Transformation to Principal Components (1/3)



By ignoring principal components with smaller variances σ௝
ଶ = 𝜆௝, 𝑗 = 𝑙 + 1, 𝑙 + 2, … , 𝑚 we 

can approximate (encode) vector 𝐱 with 𝐱ො of reduced dimensionality 𝑙 < 𝑚

𝐱ො = 𝑥ොଵ 𝑥ොଶ … 𝑥ො௟ = [𝐪ଵ 𝐪ଶ … 𝐪௟] 𝑎ଵ 𝛼ଶ … 𝛼௟
୘ = ෍ 𝑎௝𝐪௝  for  𝑙 < 𝑚

௟

௝ୀଵ

The error 𝐞 = 𝐱 − 𝐱ො = ∑ 𝑎௜𝐪௜
𝒎
𝒊ୀ𝒍ା𝟏 is orthogonal to 𝐱ො :

𝐞୘𝐱ො = ෍ 𝑎௜

௠

௜ୀ௟ାଵ

𝐪௝
் ෍ 𝑎௝𝐪௝

௟

௝ୀଵ

= 0

• The total variance of the 𝑚 independent random variables ε𝑋௝ is ∑ σ௝
ଶ = ∑ λ௝ ௠

௝ୀଵ
௠
௝ୀଵ

• The total variance of the 𝑙 Principal Components 𝐴௝ is ∑ σ௝
ଶ = ∑ λ௝ ௟

௝ୀଵ
௟
௝ୀଵ

⇒ The total variance of the error 𝐞 = 𝐱 − 𝐱ො is λ௟ାଵ + λ௟ାଶ + ⋯ + λ௠ (the principal 
components with the smaller variances)

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
Orthonormal Transformation to Principal Components (2/3)



Application of PCA for Image Compression & Pattern Recognition of Handwritten Numbers

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
Orthonormal Transformation to Principal Components (3/3)

Training Sample: 
Scanned images of handwritten numbers {0,1, … , 9}
𝑁 = 1700 elements/number
𝑚 = 32 × 32 = 1024 pixels/image (features)

Column 1: Encoding with 𝑚 binary digits (black or white/pixel)
Column 2: Sample averages for normalization

Evaluation of 𝑙 = 64 principal eigenvectors of the
𝑚 × 𝑚 = (1024) × (1024) correlation matrix after 
normalization (subtraction of sample averages)

Reconstruction of Images with 𝑙 ≤ 64 Principal Components
𝑙 ≪ 𝑚 = 32 × 32 = 1024 

Column 3: 𝑙 = 1
Column 4: 𝑙 = 5
Column 5: 𝑙 = 16
Column 6: 𝑙 = 32 (acceptable identification of numbers)
Column 7: 𝑙 = 64 (perfect reproducibility under significant 

compression, 1024 → 64)



Hebbian-based Maximum Eigenfilter
Linear Neural Network:

𝑦 𝑛 = 𝑣 𝑛 = ∑ 𝑤௜ 𝑛 𝑥௜ 𝑛  ௠
௜ୀଵ at step 𝑛

Hebbian Learning:
Weights increase at step 𝑛 → 𝑛 + 1 ≤ 𝑁 if 𝑦 𝑛 𝑥௜ 𝑛 > 0

To enforce stabilization (avoid unlimited growth) in every step (based on the Competition 
Principle) we normalize by summing over all synapses associated with the neuron:

the approximation is valid for small values of η

𝑤௜ 𝑛 + 1 =
𝑤௜ 𝑛 + η𝑦 𝑛 𝑥௜ 𝑛

∑ 𝑤௞ 𝑛 + η𝑦 𝑛 𝑥௞ 𝑛 ଶ௠
௞ୀଵ

ଵ
ଶൗ

≅ 𝑤௜ 𝑛 + η𝑦 𝑛 [𝑥௜ 𝑛 − 𝑦 𝑛 𝑤௜(𝑛)]

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
Hebbian Learning of 1st Principal Component (1/2)

Self-Organized Feature Analysis
Rule of Hebb: If signals (states) in the borders of a neural synapsis 𝑖 are synchronously updated in step 𝑛, 
the synaptic weight 𝑤௜ 𝑛 increase. Else it tends to zero (inspired from neuropsychology learning context)
Competition Principle: The most active synapses tend to eliminate weak ones

Signal-flow Graph of Maximum Eigenfilter with Normalization
Positive feedback 𝑦 𝑛 𝑥௜ 𝑛 is countered by 𝑦 𝑛 𝑤௜(𝑛)

𝑤௜ 𝑛 + 1 = 𝑤௜ 𝑛 + η𝑦 𝑛 𝑥௜
ᇱ 𝑛 ,

𝑥௜
ᇱ 𝑛 = 𝑥௜ 𝑛 − 𝑦 𝑛 𝑤௜(𝑛)

𝑤௜ 𝑛 + 1 = 𝑤௜ 𝑛 + η𝑦 𝑛 𝑥௜ 𝑛 , 𝑖 = 1,2, … , 𝑚,  η learning-rate hyperparameter



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING 
Hebbian Learning of 1st Principal Component (2/2)

Convergence Issues of Self-Organized Algorithm 

Definitions of Vectors
𝐱(𝑛) = [𝑥ଵ 𝑛  𝑥ଶ 𝑛  … 𝑥௠ 𝑛 ]୘ 
𝐰(𝑛) = [𝑤ଵ 𝑛  𝑤ଶ 𝑛  … 𝑤௠ 𝑛 ]୘

Unsupervised Learning via Self-Organization Algorithm:  

𝑦 𝑛 = 𝐰୘ 𝑛 𝐱(𝑛), 𝐰 𝑛 + 1 = 𝐰 𝑛 + η𝑦 𝑛 [𝐱 𝑛 − 𝑦 𝑛 𝐰 𝑛 ] ⇒

𝐰 𝑛 + 1 = 𝐰 𝑛 + η[𝐱 𝑛 𝐱୘(𝑛)𝐰 𝑛 − 𝐰୘ 𝑛 (𝐱 𝑛 𝐱୘(𝑛))𝐰 𝑛 𝐰 𝑛 ]

• Factors 𝐱 𝑛 𝐱୘(𝑛) represent the Correlation Matrix 𝐑 = E[𝐗 𝐗୘] at training iteration 
step 𝑛 → 𝑛 + 1 ≤ 𝑁 without mean values. It leads to convergence properties of the 
algorithm using non-linear stochastic difference equations (beyond the scope of the 
lectures)

• There is no external influence to the self-organized unsupervised learning algorithm, 
except the a-priori setting of the training hyperparameter η



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
 Generalized Hebbian-based Principal-Component Analysis (1/3)

Generalization of Hebbian-based Maximum Eigenfilter:

Linear Feedforward Single Layer Neural Network of 𝑙
output neurons associated with the most important 
Principal Components of input sample vectors of 
dimensionality 𝑚, 𝑙 < 𝑚

𝑦௝ 𝑛 = 𝑣௝ 𝑛 = ෍ 𝑤௝௜ 𝑛 𝑥௜ 𝑛 , 𝑗 = 1,2, … , 𝑙

௠

௜ୀଵ

Hebbian Learning: Weights 𝑤௝௜ 𝑛 from input 𝑥௜ 𝑛 , 𝑖 = 1,2, … , 𝑚 to the Principal 
Component 𝑦௝ 𝑛 , 𝑗 = 1,2, … , 𝑙 change by ∆𝑤௝௜ 𝑛  in iteration 𝑛 → 𝑛 + 1

∆𝑤௝௜ 𝑛 = η 𝑦௝ 𝑛 𝑥௜ 𝑛 − 𝑦௝(𝑛) ෍ 𝑤௞௜ 𝑛 𝑦௞ 𝑛

௝

௞ୀଵ

, 𝑗 = 1,2, … , 𝑙  &  𝑖 = 1,2, … , 𝑚
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Generalized Hebbian-based Principal-Component Analysis (2/3)

Generalized Hebbian Algorithm (GHA)

∆𝑤௝௜ 𝑛 = η𝑦௝ 𝑛 𝑥௜
ᇱ 𝑛 − 𝑤௝௜ 𝑛 𝑦௝ 𝑛 ,  𝑗 = 1,2, … , 𝑙  και  𝑖 = 1,2, … , 𝑚

𝑥௜
ᇱ 𝑛 = 𝑥௜ 𝑛 − ෍ 𝑤௞௜ 𝑛 𝑦௞ 𝑛

௝ିଵ

௞ୀଵ

∆𝑤௝௜ 𝑛 = η𝑦௝ 𝑛 𝑥௜
ᇱᇱ 𝑛 όπου 𝑥௜

ᇱᇱ 𝑛 = 𝑥௜
ᇱ 𝑛 − 𝑤௝௜ 𝑛 𝑦௝ 𝑛

𝑤௝௜ 𝑛 + 1 = 𝑤௝௜ 𝑛 + ∆𝑤௝௜ 𝑛 , 𝑤௝௜ 𝑛 = ȥିଵ[𝑤௝௜ 𝑛 + 1 ]

Vector Form of GHA:
∆𝐰௝ 𝑛 = η𝑦௝ 𝑛 𝐱௜

ᇱ 𝑛 − η𝑦௝
ଶ 𝑛 𝐰௝ 𝑛 , 𝑗 = 1,2, … , 𝑙

where 𝐱′ 𝑛 = 𝐱 𝑛 − ∑ 𝐰௞ 𝑛 𝑦௞(𝑛)
௝ିଵ
௞ୀଵ



For 𝒋 = 𝟏:   𝐱′ 𝑛 = 𝐱 𝑛
Evaluation of 1st Principal Component 𝑦ଵ 𝑛

For 𝒋 = 𝟐:   𝐱′ 𝑛 = 𝐱 𝑛 − 𝐰ଵ 𝑛 𝑦ଵ 𝑛
Evaluation of 2nd Principal Component 𝑦ଶ 𝑛 as 1st component after subtracting 𝑦ଵ 𝑛

For 𝒋 = 𝟑:   𝐱′ 𝑛 = 𝐱 𝑛 − 𝐰ଵ 𝑛 𝑦ଵ 𝑛 − 𝐰ଶ 𝑛 𝑦ଶ 𝑛
Evaluation of 3rd Principal Component 𝑦ଷ 𝑛 as 1st component after subtracting 𝑦ଵ 𝑛
and 𝑦ଶ 𝑛

…..

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
 Generalized Hebbian-based Principal-Component Analysis (3/3)

𝐱ᇱ(𝑛) = 𝐱 𝑛 − ෍ 𝐰௞ 𝑛 𝑦௞ 𝑛

௝ିଵ

௞ୀଵ

, 𝑗 = 1,2, … , 𝑙

The 𝑙 most significant Principal Components correspond to the 
eigenvectors 𝐪௞ of the Correlation Matrix 𝐑 = E[𝐗𝐗୘] , 𝑘 = 1,2, … , 𝑙
oredered by decreasing order of eigenvalues λଵ > λଶ > ⋯ > λ௟ and 
provide the estimate 𝐱ො(𝑛) of input sample element 𝐱 𝑛 of 𝑚 > 𝑙
characteristics

𝐱ො(𝑛) = ෍ 𝑦௞(𝑛)𝐪௞  για  𝑙 < 𝑚

௟

௞ୀଵ



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Generalized Hebbian Algorithm (GHA): Image Coding Example (1/2)

• Training Sample: 2000 scanned pictures of Lena 256 × 256 pixels, 256 gray levels
as in the 1st Original Image

• Training Sample Elements: Images segmented to 1024 non-overlapping Blocks of 
size 8 × 8 pixels: 𝑚 = 64 features/block

• Every block corresponds to sample input vector of 𝑚 features (pixels) encoded into 
256 gray levels (8 bits/pixel): 

𝐱(𝑛) = [𝑥ଵ 𝑛  𝑥ଶ 𝑛  … 𝑥௠ 𝑛 ]୘ 𝑛 = 1,2, … , 𝑁
• The sample vectors are fed into a Linear Feedforward Network with 𝑙 = 8 outputs
• The 𝑚 × 𝑙 = 64 × 8 synaptic weights 𝑤௝௜ 𝑛 converge to 8 Significant Principal 

Components at its output nodes:

𝑦௝ 𝑛 = ෍ 𝑤௝௜ 𝑛 𝑥௜ 𝑛 , 𝑗 = 1,2, … , 𝑙

௠

௜ୀଵ

• The Learning Rate) is set to η = 10ିସ

• The weights after convergence are depicted in the 2nd Image with 4 × 2 = 8 regions
(masks), 64 segments/mask, total 64 × 8 = 1024 segments representing the 
contribution of 64 features of the sample input to the 8 outputs. White color 
signifies positive contribution, black negative and gray no contribution

• The 3rd Image is a reconstruction of the Original using only 𝑙 = 8 most significant 
Principal Components

𝐱ො 𝑛 = ෍ 𝑦௞ 𝑛 𝐪௞ ,     

௟

௞ୀଵ

𝐪௞ = lim
௡

𝐰௞ 𝑛 , 𝐰௞ 𝑛 = 𝑤௞ଵ 𝑛  𝑤௞ଶ 𝑛 … 𝑤௞௠(𝑛) ୘

• The 4th Image is a compressed version of the 3rd Image with quantized values 
according to the logarithm of the 8 output variances (final compression 11: 1)



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Generalized Hebbian Algorithm (GHA): Image Coding Example (2/2)

Original Image (Peppers): 𝟐𝟓𝟔 × 𝟐𝟓𝟔 pixels (features), 𝟐𝟓𝟔 gray levels

12 to 1 compression via quantization of weights into 8 Significant 
Principal Components determined for Peppers

12 to 1 compression via quantization of weights into 8 Significant 
Principal Components determined for Lena but applied for Peppers
(GENERALIZATION ?)



SOM Model, Kohonen 1982

• Self-Organized Maps (SOM) refer to nonlinear Neural Networks with 𝑚–dimensional inputs
𝐱 = 𝑥ଵ 𝑥ଶ … 𝑥௠

஋ (Sample Vectors, Examples)

• By analogy to mammal brain functions, Kohonen suggested in 1982 a Feedforward Neural 
Network of a Single Layer of neurons 𝑗 = 1,2, … , 𝑙 placed in a Feature Map Lattice

• Input nodes interact with postsynaptic lattice neurons with weights 𝐰௝ = 𝑤௝ଵ 𝑤௝ଶ … 𝑤௝௠
஋

• The activated states of postsynaptic neurons reflect the system estimate for 
𝐱 = 𝑥ଵ 𝑥ଶ … 𝑥௠

஋ regarding the closest resemblance to patterns stored in SOM regions

• Regions are neighborhoods of active neurons, determined via Competitive Unsupervised 
Learning around the closest neuron (winner) to input vector 𝐱

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Overview of Self-Organizing Maps (SOM)

SOM Applications
• Selection of dominant features in multi-dimensional 

sample spaces
• Image compression by identification of similar 

regions
• Pattern recognition, classification of images
• Reconstruction of images, filtering of interference 

and noise
• Completion of partially damaged examples



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
SOM Configuration (1/5)

• Algorithm of feature map configuration is based on Hebb principles for topological self-
organization of neural nets into postsynaptic neuron grids (arrays, lattices)

• It saves via unsupervised learning patterns in the training data by selscting 𝑙 ≪ 𝑚 features 
(data compression, dimensionality reduction)

• After configuration SOM attempts to reconstruct incomplete or distorted due to noise new 
examples, based on statistical similarity to pre-stored patterns

• Comparison with K -Means Clustering: With an adequate number of neurons SOM also 
identifies K  as the number of winning neurons, without the need for repeated trials! 

Formation of Neuron 
Lattice with Input of 3  
Features and Output of 
Dimensionality 4 × 4



SOM Model, Kohonen 1982

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
SOM Configuration (2/5)

• An unsupervised learning algorithm identifies the closest neuron (winning neuron) for 
every input training vector 𝐱 via a Competition Process that maximizes a discriminant 
function

• The winner determines a region of active neurons via a Cooperation Process with 
postsynaptic neighbors in the two-dimensional array, resulting in topological feature map
of active neurons via self-organization

• In the Hebbian self-organization the weight vector 𝐰௝ is updated with each training input 
vector 𝐱. For stability of the iterative learning an Adaptive Process may guarantee that 
weights do not increase in uncontrollable fashion



Μοντέλο SOM, Kohonen 1982

STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
SOM Configuration (3/5)

Competition Process

During training it identifies the closest postsynaptic neuron 𝑗 (winner) for every input 𝐱 via 
competition that maximizes a discriminant function of the inner product 𝐰௝

୘𝐱

• ∀ 𝐱 = 𝑥ଵ 𝑥ଶ … 𝑥௠
஋ select 𝐰௝ = 𝑤௝ଵ 𝑤௝ଶ … 𝑤௝௠

஋
for postsynaptic neurons 𝑗 = 1,2, … , 𝑙

• Select winning neuron 𝑖(𝐱) as the one with the maximum 𝐰௝
୘𝐱 (the activation center within 

the array).  Its selection is equivalent to identifying the minimum Euclidean distance between 
vectors 𝐱 and 𝐰௝. If 𝐰௝ = 1:

𝑖 𝐱 = arg min
௝

𝐱 − 𝐰௝



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
SOM Configuration (4/5)

Cooperation Process

• During training, the winning neuron 𝑖(𝐱) defines a region ℎ௝,௜(𝐱) of activated neighbors 
within a lateral distance 𝑑௝,௜(௫)

• A usual choice: Gaussian Function ℎ௝,௜(𝐱) = exp −
ௗೕ,೔ ೣ

మ

ଶఙమ

• The standard deviation 𝜎 may decrease as training proceeds, attenuating spatial correlations
of nodes in the array and accelerating convergence of synaptic weights



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
SOM Configuration (5/5)

Adaptive Process
•

The Hebbian based self-organized learning algorithm requires corrections while iterating 
towards a finite weight vector 𝐰௝ for each example 𝐱.  A remedy is to adjust its coordinates 
via a forgetting term proportional to the output in each iteration

• Definition of Forgetting Term: 𝑔 𝑦௜ 𝐰௝ with 𝑔 𝑦௜ a non-negative function of output 𝑦௜

with 𝑔(𝑦௜) = 0 for 𝑦௜ = 0

• Updates are guided by differences Δ𝐰௝ = η𝑦௜𝐱 − 𝑔 𝑦௜ 𝐰௝ where:
η: learning hyperparameter,
𝑦௜𝐱:  Hebbian term
𝑔 𝑦௜ 𝐰௝: forgetting term

• With linear forgetting term 𝑔 𝑦௜ = η𝑦௜ and 𝑦௜ = ℎ௝,௜(𝐱) we obtain:
Δ𝐰௝ = ηℎ௝,௜ 𝐱 (𝐱 − 𝐰௝) with 𝑖 𝐱 the winning neuron for input 𝐱

• In iteration 𝑛 → 𝑛 + 1 and with decreasing hyperparameter η(𝑛):

𝐰௝ 𝑛 + 1 = 𝐰௝ 𝑛 + η(𝑛)ℎ௝,௜ 𝐱 (𝑛)(𝐱(𝑛) − 𝐰௝(𝑛))

The synaptic weights to the winning neuron converge to input sample vector 𝐱 and 
those of the neighboring neurons reflect the distribution of the training sample



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Autoencoders (1/2)

Encoder: 
Input       𝐱 = 𝑥ଵ 𝑥ଶ … 𝑥௠

஋

Output    𝐡 = 𝐅𝐞(𝐱) = ℎଵ ℎଶ … ℎ௟
஋,  𝑙 ≪ 𝑚 (code, latent variables)

Decoder: 
Input  𝐡 = ℎଵ ℎଶ … ℎ௟

஋

Output 𝐱ᇱ = 𝐅𝐝 𝐡 = 𝑥ଵ′ 𝑥ଶ′ …  𝑥௠′ ஋ (reconstruction of 𝐱)

Bottleneck:
Middle layer of hidden nodes reflecting 𝑙 latent variables

Unsupervised Learning Algorithm:
MSE minimization 𝐱 − 𝐱ᇱ ଶ via backpropagation for unlabeled training sample elements

• The latent variables reveal reduced 
feature maps. With linear neural nets 
and zero bias they estimate the 𝑙
Principal Components of unlabeled
sample sets

• Applications include image compression,
pattern recognition, correction and 
completion of distorted (noisy) images, 
anomaly detection from unlabeled 
training datasets

The decoder layers are not used after the encoder
parameter tuning (training) stage for applications 
relying on determination of latent variables, e.g. for 
dimensionality reduction and compression



STOCHASTIC PROCESSES & OPTIMIZATION IN MACHINE LEARNING
Autoencoders (2/2)

Autoencoder Use for Anomaly Detection

• Used to identify outliers, rare invalid anomalies hidden among many normal unlabeled
sample elements

• The autoencoder parameters in all stages are tuned by back-propagation with normal
examples as input training elements

• Close reconstruction of input elements at the output layer is considered as the test for a 
test (or new) element to be classified as normal or dismissed as a statistical outlier

• Critical hyperparameters: Reconstruction deviation (e.g. MSE) and threshold classifying an 
element as statistically normal or as an outlier

Note: All layers of the Autoencoder are employed in the post-
training phase of its operation as Anomaly Detector

https://saketsathe.net/downloads/autoencode.pdf


