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%QR Cognitive Computing and Al

e Increasing interest in Cognitive Computing and Al
e Market spending $12B in 2017; 60% increase from 2016
e By 2021 to reach $57.6B; annual growth rate of 50%

— Half of expenditures in software and cognitive platforms
— Rest in hardware and services
— Hardware expenditures to increase at 40% per year

e Applications:
— Retail, banking, manufacturing, healthcare

— Automated service agents, Diagnostic and treatment systems, Expert
shopping advisors

— Manufacturing, Intelligent processing automation, Product
recommendations

— Public safety and emergency response



%ISR Brain-Like Computers 3

Race to design and manufacture “brain-like” computers is on

Tensor Processing Unit | gk

Gy

TrueNorth

2 1M Neurons
4 256 M Synapses
4 Real time

Feb 2018 INTEL
establishes INTEL
Neuromorphic
Research Community
(INRC) -- academic-
industry-government
group/consortium

1000x more energy efficient
Spike based info processing
Storing info on synapses
130K neurons, 130M synapses




%ER Brain-Like Computers 4

e Most promising: neuromorphic systems — modeled after the
human brain

— Potential of being more generalizable than existing cognitive systems

e Limitations of current cognitive computing systems

— Require a very large body of information to be ingested before
having a knowledge base large enough to develop a model to which
new data can be compared and classified -- For many applications
such amounts of data may simply not be available

— Training time 1s often extensive -- Human brain is much more
efficient: after just a few examples a toddler can recognize a dog — in
contrast with current image recognition systems

— Cannot match human brain in power efficiency



% Neural Networks vs
ISR Synaptic Networks

e Can a computer ever simulate effects of Ms of neurons
and Bs of synaptic connections (in the brain)?

e Key challenge: create synapses that emulate the brain

e Deep Learning Neural Networks are used for
Optimization and Pattern Recognition

e Need technologies designed for decisions: system takes in
data of various types, makes inferences, provides output
as scored list of answers for a context or use case --
Machine, or human, then decides based on these answers

e Traditional NN:

- An input is provided, processed through multiple layers of nodes
- An output layer provides answer (house, human, car, dog)
- Hidden layers improve NN’s interpretation of image

- Training: processing many examples to adjust node weights



% Neural Networks vs ’
ISR Synaptic Networks

e Synaptic networks: nodes indicate objects or features

e Connections between synaptic nodes indicate similarity or
not of objects or features at the nodes

e When an unknown case is presented, certain nodes will be
activated and others will be inhibited (as in brain)

e Other similar nodes can be activated to form inferences

e Learning rules provided by humans set the weights on the
connections

e Synaptic networks via their wiring diagrams describe how
objects, features relate to each other

e They do not need to be trained on large amounts of data

e Path from data to decisions is transparent: the “why” of a
decision is provided through the activated and inhibited
nodes - explainable decisions



% Neural Networks vs
ISR Synaptic Networks

e Human brains provide several options — rarely one answer

e Synaptic networks return different options based on data that
are built over time

e Traditional NN must retrain when new data is presented

e Synaptic networks continues to add data as the data become
available, constantly adjusting weights between nodes and
building new inferences

e In traditional NN when a new type of data becomes available,
the model has to be rebuilt from the ground up vs adding
knowledge as it Is learned



%ER Hierarchical Temporal Memory

e The Hierarchical Temporal Memory (HTM) framework is
modeled after the neocortex of the human brain

— Applied to anomaly detection and mitigation in the cloud (e.g. Grok)
— Applied to Natural Language Processing (NLP)

e Inspiration comes from understanding how key features of the
brain support memory and learning

e Neocortex is very homogeneous: each part carries the same
type of operation even though different parts of the neocortex
process different types of information (vision, language, etc.)

e Thus if a common algorithm can be developed to replicate the
functioning of the neurons, it could generalize to other tasks in
an intelligent computer system in a way that current Machine
Learning (ML) cannot



%HR Hierarchical Temporal Memory 9

e The neocortex receives two types of inputs: One Is sensory and
the other is information about actions that are being carried
out by the person (e.g. speaking, walking, eye movements)

— Both inputs provide streams of data in time-based patterns

— The neocortex stores this information , the memory of which allows
it to make predictions based on experience

— The information then directs the person’s future actions

e Key: an intelligent computer needs to have a way to discover
things about the world around it either through sensors or
through directed actions for knowledge -- Current computer
systems do not incorporate this aspect of computer intelligence

e Newborn humans and animals have learning structures that
have evolved through many millennia — architecture ?
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%ISR Impact of Al ?

e Automating Cognitive Tasks
— Alexa, Home, digital twins, ...
e Industrial Economy: primary challenge — automate the task
e New Intelligence Economy: understand and define the
cognitive tasks our machine intelligence must carry out
— Multiple kinds of intelligence
— Human - machine collaboration
— Safety and safe learning
e Impact on every aspect of life, work, society, etc. at both the
Individual and group level

e Impact on jobs
e Can we handle the technology?



%HR Key Problems/ Challenges

Advancing Al further needs: best of neuroscience,
computer science and mathematics

Link Machine Learning with Knowledge
Representation and Reasoning

Progressive Learning
Knowledge Compacting

Rigorous analytics needed to create design tools to
meet specifications

Hardware architectures: hybrid (digital and analog)

Non von-Neumann computing — do not separate
CPU form Memory — In-memory processing

11



%QR Outline

e Deep Learning



ISR

DL Breakthrough Results in Understanding:
speech, images, gestures, texts, ...

Hinton et al, 2012 : http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/38131.pdf

[ DNN-HMM

modeling #params WER task hours of GMM-HMM GMM-HMM
technique [106] -IubS’OO-S\Vd RTO3S-FSH training data with same data | with more data
GMM. 40 mix DT 309h SI | 204 “ 236 ‘ 274 wathhboard (test set 1) 309 18.5 274 18.6 (2000 hrs)
Switchboard (test set 2) 309 16.1 23.6 17.1 (2000 hrs)
NN 1 hidden-layer>x4634 units 43.6 26.0 294 English Broadcast News | 50 175 188
+ 2 x5 neighboring frames 45.1 224 25.7 i Bing Voios Sesrch 1 304 36.2
DBN-DNN 7 hidden layers x2048 unity 45.1 17.1 19.6 s ervor aies)
+ updated state alignment 45.1 || 164 18.6 Google Voice Input 5.870 12.3 16.0 (>>5,870krs)
+ sparsification 152 nz || 16.1 18.5 Youtube 1.400 176 573
GMM 72 mix DT 2000h SA | 1024 || 17 18.6
Dataset Best result MCDNR M
http://yann.lecun.com/exdb/mnist/ of others [%] [%] ifmprov. [{o]
. . MNIST 0.39 0.23 41
http://people.idsia.ch/~juergen/cvpr2012.pdf  Ni1STSD 19 | sce Table 4 fee Tablept | 30-80
HWDB1.0 on. 7.61 5.61 26
HWDB1.0 off. 10.01 6.5 35
CIFAR10 18.50 11.21 39
traffic signs 1.69 0.54 72
NORB 5.00 L 2.70 46




%QR Decision Boundary

Initial random weights




%QR Decision Boundary (cont.)

Present a training instance / adjust the weights




%QR Decision Boundary (cont.)

Present a training instance / adjust the weights




%QR Decision Boundary (cont.)

Present a training instance / adjust the weights




%QR Decision Boundary (cont.)

Present a training instance / adjust the weights




%QR Decision Boundary (cont.)

Eventually ....




%QR Features -- Learning 20
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%QR Feature Detectors
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% Feature Detectors — 2
ISR What is this unit doing?
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% Successive Layers Can Learn 23
ISR Higher-level Features
1

5 10 15 20 25

detect lines in
Specific positions

Higher level detetors
( horizontal line,
“RHS vertical lune”
“upper loop”, etc...

etc ...



% Deep Learning: New Way to
ISR Train Multi-layer NNs

i



% Deep Learning: New Way to
ISR Train Multi-layer NNs (cont.)

$33ids

Train this layer first




% Deep Learning: New Way to
ISR Train Multi-layer NNs (cont.)

S

Train this layer first

Then this layer



% Deep Learning: New Way to
ISR Train Multi-layer NNs (cont.)

Ry

Train this layer first

Then this layer
Then this layer



% Deep Learning: New Way to
ISR Train Multi-layer NNs (cont.)

R

Train this layer first

Then this layer

Then this laver
Then this layer



% Deep Learning: New Way to ”
ISR Train Multi-layer NNs (cont.)

S

Train this layer first

Then this layer

Then this laver

Then this laver
Finally this layer



% Deep Learning: New Way to ”
ISR Train Multi-layer NNs (cont.)

$3iids

EACH of the (non-output) layers is trained to be an
auto-encoder

Basically, it is forced to learn good features that
describe what comes from the previous layer



%QR Some Current Deep Architectures

31

Convolutional Networks (Lecun)
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Feature Hierarchies

object models

object parts
(combination
of edges)

edges
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% Early Hierarchical Feature .
ISR Models for Vision

# [Hubel & Wiesel 1962]:
» simple cells detect local features

|I’I’

» complex cells "pool” the outputs of simple
cells within a retinotopic neighborhood.
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% The Convolutional Net Model "
IMR Multistage Hubel-Wiesel System

Convolutions W/~ Pooling: Convs: Pooling: Coms: ooy Object
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Retinotopic Feature Maps [LeCun et al. 98]



IR

Mammalian Visual Cortex d
IS Hierarchical

# The ventral (recognition) pathway in the visual cortex has multiple stages

# Retina - LGN - V1 -V2 - V4 - PIT - AIT ....
# Lots of intermediate representations

WHERE? (Motion,
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[Parietal stream] [Inferotemporal stream]
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% Multiresolution
IMR  Auditory Filtering (Shamma et al)

Preprocessor:

Two auditory filters, motivated and designed according to acoustic
physiology and acoustic cortex models, were used to compute the

timbre spectrogram of one particular subframe in each frame

docbhlbom-ho?o?

0 10 20 3V 40 5 60 7 80 9 100

. Time Waveform
A -~
I log
- L, -
[ log logf u logf -
- —
logf

M 20 W 40 50 60 7 80 90 100

Time (ms) eardrum cochlea Basilar membrane Hair cell Time

filters

stage

e The first filter mimics the action of the inner ear

e Computes the spectrogram of the sound sample, and performs
various nonlinear operations, which models the nonlinear

fluid-cilia couplings and ionic channels of conduction

( Wavelet Transform)

8
Frequency

5 88

36
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% Spectro-Temporal Processing of -
ISR Sound (Shamma et al)

Primary Auditroy Cortex (A1)

3-D virtual cortical model:

Auditory Spectrum )
Py suprasylvian : : :
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= . .
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*Tonotopic axis: best frequencies (BF) of filter bank along the cochlea (log
scale)

*Auditory spectrum: short-time, self-normalized power spectrum (x is the BF)

*1-D pattern virtually mapped to at least 3-D pattern in cortex

*Cell tuning along isofrequency contours varries: symmetry, bandwidth and
FM selectivity



% Multiresolution Preprocessor: o
ISR Auditory Filterin

Multiresolution cortical filter outputs

: Fast Rate —| Slow Rate — | Slow Rate . Fast Rate
Fine Scale Fine Scale Fine Scale Fine Scale
3 8, S == S ig.% oole Teg Ta
Upward Moving Downward Moving
4 Fast Rate ~| Slow Rate w1 Slow Rate 4 Fast Rate
Coarse Scale Coarse Scale Coarse Scale Coarse Scale

& .f - ‘q SR Y YN W

e The second filter models the multiscale processing of the
signal that happens in the auditory cortex

e A Ripple Analysis Model, using a ripple filter bank, acts
on the output of the inner ear to give multiscale spectra of
the sound timbre (Wavelet Transform)




IR

“One Learning Algorithm”
Hypothesis

S/ y 4

Auditory_ Co}texi

Auditory cortex learns to see

[Roe et al_, 1992]
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% “One Learning Algorithm” !
ISR Hypothesis (cont.)

¥ \a
A /

Somatosensory Cortex

Ve

Somatosensory cortex learns to see
[Metin & Frost, 1989]




%L'JR Progressive Classification

41

e Small amounts of information in the form of a coarse
approximation of the signal, are used first to provide partial
classification

e Progressively finer details are added until satisfactory
performance is obtained

e Approach results in a scheme where:
— Small amounts of computation are used initially (at coarse level)
— Additional computations (more detailed) are performed as needed

e Approach leads to:
— Faster classification algorithms (faster search)
— Algorithms that preserve high fidelity in the search (the challenge)
— Easily parallelizable algorithms
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%L'JR Motivation and Applications

e Classification of image data and the recognition of objects in images
- Formidable difficulties due to:
- size of image databases
* lack of systematic procedures for data compaction for recognition
* multitude of situations where images appear in practice

e ATR based on sensor data from pulsed radar (PR), Doppler radar
(DR), synthetic aperture radar (SAR), inverse synthetic aperture radar
(ISAR) millimeter--wave (MM--wave) radar, LADAR, and FLIR

- Key step for high performance ATR is the construction of efficient target
models which result in significant search speed-up and memory reduction

e Face recognition
e Text-independent robust speaker identification
e Speaker-independent speech recognition

e Acoustic signal recognition (e.g. fault identification in gearboxes
and bearings, ground vehicle identification from  array
microphones)

e Image understanding and object recognition in vision systems



% Multiresolution and Learning
ISR

43

Clustering
Feedback
v v Class
Multiresolution Nonlinear Learning Clustering
Preprocessor Features Postprocessor

e Address both the hierarchical organization of signal databases and

progressive classification:

~ Combine a multiresolution preprocessor with

a learning clustering postprocessor

- Feedback is also an option

e Resulting algorithms proved to have some “universal” qualities

e Found analogs of such algorithms in animals and humans:

- Hearing and sound classification

- Vision and identification of objects by humans

e Most promising mathematical formulation of the problem:

combined compression and classification for general signals



% An Example: ATR Based
ISR on Radar Returns

44

e High resolution radar returns contain substantial information for the
identification of complex targets (targets with many scatterers)

e Can store many returns indexed by: aspect, elevation, pulsewidth etc.

e Creates need for huge memory to store data and slows search for
matching

e Critical need: Develop extremely efficient representaions of high
resolution radar data which result in fast and high performance
identification

e Our key idea:
- Organize signal database hierarchically based on resolution
(from coarse to fine)
- Develop progressive identification/classification algorithms



IR
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Scale-Space Diagrams of “
Radar Returns
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% Hierarchical Organization v
ISR

of Radar Pulses

e Problem: How to develop a hierarchical, tree-structured organization

of radar returns, which utilizes the multiresolution representations
provided by wavelets and leads to fast classification

e Vector Quantization (VQ) is a widely used data compression method

Vector Quantizer:a map Q: R" = C={c,,C,,...,Cy}; X — Q(x)IinC

C the codebook of Q; set of centroids; set of \VVoronoi vectors

Q induces partition of R": A={x: Q(X)=c;},i=1, 2, ..., M; (Voronoi) cells
p;Rn an = [0,00), p(U, V) distortion when u is represented by v

e Typically applied to a large sample (size N) of random vectors X;

¥, 0 : encoder, resp. decoder of the VQ; if Q(x;) =c ,,, theny(x;) =m,
and d(m) =c,, Q) =d(y(X;)); Since M<<N, VQ compresses data

Average Distortion D = E[p(x, Q(x))] = E[p(X, 6 (* (X))] =] p(X,Q(x)) dP(X)
_ k
Empirical Distortion: D = &im%ZP(XnQ(Xi )

—®0  j=]
Rate: R=1og,M /n; # of bits pel1 vector component
v, bit-rate: R;= nRf,;

Blocked scalar process (block size n); sampling rate: f., bit-rate: R.= Rf,

bit-rate: R,=nR; vectorrate: f




% Hierarchical Organization “
ISR of Data and VQ

Progressive compression: both encoder and decoder use the
structure

Designing the tree structure: application of the LBG algorithm to
successive stages using a training set

We used a variant of this method which is of the “greedy” variation.
Our algorithm splits the cell which contributes the largest portion of
the current overall distortion (Makhoul, Roucos, Gish, 1985)

Codewords have variable lengths; variable rate coding: devote
more bits to important vectors, and fewer to unimportant vectors

Better strategy for TSVQ: split node that results in the biggest
decrease in average distortion after the split (Gray et al, Nobel, ...)

T a binary tree; T, the leaf nodes; depth(v) of a node v is the
length of the path from the root to v ; Corresponding TSVQ
described by T with nodes labeled with distinct vectors in R ";
Q+(x) determined by binary comparisons that trace a pathinT

— X moves to the “child” of v that is closest to x

— Codebook of Q;=vectors labeling nodes in T,



% Hierarchical Organization ”
ISR of Data and VQ

e Performance of TSVQ applied to random vector x with distribution P :
Distortion: D(Q, P) = E[ p(x, Q(X))]
Rate (Expected Depth of T): R(T,P) =2'depth(v) P(v) |[vin T,
e Varegionin R"; a centroid for V with respect to P is a vector c that
minipizes c)dP(x) C,(V, P) all centroids for V

e Split V into two regions; assign eachx toa or b
V, ={XeV:p(x,a)< p(x,b) Via =XV : p(X,b) < p(x,a)
(a,b) is a centroid pair for V with respect to P if it minimizes
[, min( p(x,a), p(X,b))dP(X) C,(V, P) centroid pairs for V
e Splitting V yields a decrease in distortion
AD*(V) =, p(x,c)dP(x) - |, min(p(X,a), p(x,0))dP(x)
e Greedy design rule for TSVQ: split so as to maximize AD*(V)/P(V)

e Trees converge, distortion converges based on empirical estimates



% Wavelet Tree-Structured Vector ~
IR Quantization

AN

&

Resolution 3

Resolution 2

Resolution 1

First perform a
multiresolution wavelet
representation of the
signals

Consider each signal f at
different resolutions

Sf, Sif, ..., SI'f

Proceed by partitioning
the signal space at various
resolutions in
progressively finer cells

Layer in tree [ =]*-m,
m the scale

( top layer 0: coarsest)
Cell labels: (layer, index)
or (scale, index)



%QR WTSVQ

e The data vector space (signal space) is partitioned into cells by the
repeated application of the Linde-Buzo-Gray (LBG) algorithm

e LBG first applied to coarsest representation of data vectors { S/’f, f €S/
e Resultant distortion determined based on a mean squared distance metric;
computed using the finest resolution representation of the data vectors
- Coarsest representation, corresponding length data vectors the shortest (16)
— Clustering is faster than a clustering performed on the much longer fine
resolution representations of the data vectors.
e Split the cell (coarse resolution) which is the greatest contributor to total
average distortion for the entire partition ; in the next application of LBG

- A new Voronoi vector is found near the Voronoi vector for the cell to be split
and is added to the Voronoi vectors previously used for LBG

- LBG is then applied to the entire population of data vectors, again using the
coarsest representation of each vector

e These steps are repeated until the percentage reduction in distortion for
the entire population falls below a predetermined threshold



% WTSVQ: Performance on g
ISR Radar Data

» “Greedy” but
faithfull
x104
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full search VQ
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% WTSVQ: Aspect Graph ?
ISR Interpretation

At coarse level
WTSvVQ
clusters pulses
according

to aspect

*Moving to finer
resolutions
clusters pulses
according to local
maxima

Extremely efficient
indexing scheme
akin to aspect graph:
A multiresolution
aspect graph




% WTSVQ: Aspect Graph
MR Interpretation
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% Multiresolution Aspect Graph: =
MR Radar Data
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% Multiresolution Aspect Graph: "
ISR ISAR Data




% WTSVQ: Aspect Graph 7
IMR Interpretation

e The nodes (cells in these figures) correspond to aspect-elevation
neighborhoods from which the pulse returns are indistinguishable :

A tesselation of aspect-elevation space

e Transitions from one node to the other indicate a change in aspect-
elevation, or in resolution, causing a detectable change in the pulse

e In the radar case these changes are due to grouping (or ungrouping)
of scatterers, or scatterer visibility (or non visibility) from the cell

e We have developed an algorithmic construction of

scale space aspect graphs (or multi-resolution aspect graphs)

— Compare with conventional ad hoc methods of indexing radar
pulses

based on small aspect-elevation cells
e Method reflects the accuracy limitations of the sensor

— Does not attempt to separate the pulses more than the sensor noise will
permit

e Algorithm constructs the minimum number of “views” needed



%B’JR ATR with Global or Parallel Aspect Graph

38

Represent the entire radar database on targets by

a single aspect graph : the Global Aspect Graph (GAG)
Represent each data set from a single target by

an aspect graph: the Parallel Aspect Graph (PAG)

ATR using the first approach we find the leaf node of the Global
Aspect Graph that is closest to the data and this gives us the decision

ATR using the second approach we pass the real-time data in parallel
from each aspect graph, find the aspect graph whose leaf provides the
best proximity to the data and identify the target with the label of this
aspect graph

Second algorithm is much faster due to its parallel implementation

Many experiments have shown that it performs much better than the
first consistently, as measured by confusion matrix and ROC curves

It also performs close to the optimal provided by LVQ (Bayes optimal)

Second algorithm provides the best solution for inserting new targets
in the database because it does not require a recomputation of the
aspect graphs
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%QR Performance of WTSVQ: PAG vs GAG

Prob. of Detection vs. Tree Size SNR vs. Tree Size Search Time vs. Tree Size
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%FSR Learning Vector Quantization )

e Data driven; uses past data directly in the classification scheme
e Does not assume any models for underlying data

* Estimates the decision regions
directly

*Training phase and classification
phase

*Training phase:

Z = training data

(Yo, d, sy

Voronoi vectors =0 ={0,,0,, ..., 0,}

decisions = {dg ,dg, s A »dek}
e Pick z=(y, dy,-) from Z and find p - closest vector 0, b
e Modify 6, as follows 8 (n+1) =6.(n) -,V ,p (8.(n),y;) if dy].= dg_

ec(n+1) = ec(n) -l-(xnV 0P (ec(n)l y]) if dy] * dec
e Continue until convergence



18R LVQ

e C(lassification phase: for new observation x declare
e LVQ adjustment has the general form

Hi (n T 1) = Hi (n) T Oan/(d Yn >d9i (n)a Xn >®n)vep(6i (n), yn)
7/(d Yn ? dei (n)a Yn 9®n) = _l{yneVei}(l{dyn =0y, } - l{dyn 20y })

e 0,,=0+a,H(®,,2,); stochastic approximation

Zy =(Yp,dy )
e For appropriate conditions on a_, H, z , ®_ approaches the
solution of the ODE

d ..
4t 2O =heM)

for appropriate h(®)

n+1
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% Combined Compression and &
ISR Classification

e Same as partitioning the feature space into decision regions
corresponding to each class

— Boundaries of the cells can approximate the Bayes decision
surfaces

e Need to develop efficient adjustment methods to weight the
relative importance of the two aspects of the algorithm

— Efficient compression can reduce significantly the complexity of
classification by bringing forward essential local features of the signal

- Excessive compression may throw away valuable information and thus
reduce the accuracy of classification

— The design of this tradeoff is the key problem
e Rate and Distortion characterize compression performance of VQ
e Bayes Risk characterizes classifier performance
e Competing performance measures: multi-objective design problem:

Combine measures or optimize one while satisfying constraints on the
other



%QR Analytical Framework

e Given a encoder-decoder pair v, 5 we associate the average distortion
D(7,0)=E[p(X,0(y(X)))]

e Associate the rate R(y,0) to a encoder-decoder pair y,0

e Given a classification rule d, the classification performance of the
overall scheme can be measured by the Bayes risk

L L
Jo(7,)=X X P(d(y(x)=H jx & H)P(H,)C,
i=1 j=
e where C; is the relative cost assigned to the decision that
d(y(x)) = H]-, while the vector x comes from class H; (typically Ci]- =0)
e Encoder 8 does not affect the Bayes risk J;

e Incorporate Bayes risk into the average distortion measure minimized
by the design algorithm

e Resulting algorithm has complexity equivalent to that of an ordinary
VQ algorithm



%QR Analytical Framework

e Overall approach is non-parametric:
probability distributions for the data are not needed

e Approach can be interpreted as using the training set to learn
the empirical distributions of the vectors and use them as if
they were true (like in LVQ)

e Combine the three criteria in one for some choice of the
weights Ay and Ag

J,(7,6,d)=D(y,0)+ Az R(y,0)+Ag Jg(r,d),

e Three step iterative optimization:
~ Step 1 Choose d®*) to minimize J, (y®, 81, dt*1)
~ Step 2 Choose 8t*) to minimize J, (y®, 6¢+1, dt+1))
- Step 3 Choose y**V to minimize J, (y*+V, §¢1), dt1))
— The iterations continue until the desired stoping level for J, is met
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%ER A Variation on LVQ 65

e Initialize with ©O(0) from VQ on training set

e Assign training vectors to their cells:
Find i =argmin_ p(6,(n),X) 1=1,2,...,N, thenX eV@I ")
e Cell decisions g; (®(n); N) i=1,2, ..., K

e Update the Voronoi vectors
o If Xn_|_1 Evgl(n) then

ez(n +1)=0(n)+ En+1 (-4 - I)VH,O(H, Xn+1) |€:6?,(n) If an+1 =0 (©(n); N)
=0(N) + &, (=A+ DV 0(0,%1,1) o6, T Xy # G;(O(N);N)
e For j=zi, 0,(n+1)=06,(n)



Extension to LTSVQ and &
Interpretation

Progressive classification
+ Saves memory
* Increases search speed

——Actual Bayss decision Suriace
.2 q‘f“— Approximale Bayes decision Surface

[77] Higher Rasolulion Cells

. 4‘_\f’,ax;tu:al Bayes decision Surfacs
2 Approximate Bayes decision Surface

7] Highest Resolution Cells

Aclual Bayes decision Surface
ﬁApproximate Bayes decision Surfacs

Extension of the LVQ approach to
Learning TSVQ

This step is needed for the full
analysis of WISVQ and its
application in progressive
classification within the framework
of combined compression and
classification

LTSVQ approximates directly the
optimal Bayes surface with
successive approximations and
variable (along the surface)
resolution

- Split cells where approximation is

not very good using finer resolution
information

- Akin to a multigrid numerical
computation of the Bayes surface



%QR Face Recognition i

Identification of a person based on standard ID picture and a database
where he would have previously been filed

Data we used for experiments: 349 ID pictures of 95 different people.
These Photographs are 128 x 128 pixel, 8 bpp gray level images

Every person is represented by several pictures (2 at least, 4 at most)
254 photographs form the database; Remaining 95 are the unknowns

Global identification scheme includes 5 steps
— 4 occur during the design of the Tree-Structured Data-Base
- Normalization of the DB, Wavelet Transform, Vector Quantization, Tree
design, Tree Search
- Organization results in fast real-time recognition
— First of all, the images are normalized thanks to an eye-detection based
algorithm
We have obtained the best results (in terms of high fidelity ID in very
short times) with a novel algorithm that combines global tree search
with local full search. We showed that this is equivalent with
allowing overlapping clusters at each resolution of our progressive
classification scheme



%QR Normalization of the Picture Database

68

e A key problem: selection of a good distortion measure

Euclidean distance, PSNR, do not fit well the visual identification process
Euclidean distance is very sensitive to slight shifts or rotations

Proper normalization of pictures is necessary to make sure that the
Euclidean distance is not meaningless

Normalization of a picture is achieved by first enhancing it (i.e. increasing
the contrast, remove granular noise), then by detecting the eyes, and

PR E
“%.. ';fﬂ‘ﬁ‘,-l i G \‘\."H., 2oy

Contrast Enhancement



%L'JR Tree Search and Tree Design

e By organizing the database of pictures into a tree we can obtain fast
search, which is logarithmic in the number of pictures instead of linear.
The TSVQ part of our algorithm achieves this task. We used Euclidean
distance as before.

e Node splitting: selected split that maximizes decrease in distortion
This produced the best results in accordance with greedy algorithms

We selected the centroid of each cell as the representative for ID
purposes
e We performed tests comparing various search methods
— Full Search of the DB
— Tree-Search following our WTSVQ algorithm
— Best results obtained by a combination method that used initially a
Tree-Search followed by a Full-Search in the vicinity of the target image
e Obtained further improvements on performance with Multipath Search
algorithm: more paths are followed down the tree, until the resolution
(which improves with the layers) is such that a reliable choice can be

made. If a choice cannot be made the matches are kept and a decision is
made at the end with a multi-resolution Full Search.



% Evidence From Biology and K
ISR

Neuroscience

SPEECH RECOGNITION AND ACOUSTICS AND VIRTUAL
REPRESENTATION OF SOUNDS IN THE AUDITORY CORTEX

Focus on functional model of auditory cortex (A1)

Combine mathematical model with neurophysiology experiments and
measurements

Key questions: What are the features of sound?

How are they mapped into function neurons in the cortex?
Go beyond the traditional pitch, loudness and location features
Use “timbre”: interpret the ripples in auditory spectrum

Use WTSVQ on a multiscale cortical representation of the auditory
spectrum in order to identify candidate features identifying vowels,
phonemes, instruments

Perform experiments to validate and verify features used in classification
by humans or animals

Approach very successful ! Results have implications on neural
architecture of auditory cortex



% Evidence From Biology and "
ISR Neuroscience

VISION AND VIRTUAL REPRESENTATION
OF OBJECTS IN THE VISUAL CORTEX

e Our work emphasizes storage of objects as a collection of a minimal
set of views for storage and classification efficiency

e How do animals, humans perform these tasks? Experiments by
Poggio and Logothetis , Poggio and Anselmi (2017) with animals
(monkeys) and actual brain measurements support our thesis

e Monkeys appear to store two-dimensional views of 3-D objects, for
various viewpoints

e They store more views for new or unknown objects; less views later as
they learn to recognize the object

e The reduction of views is accompanied by some higher order
interpolating function

e These observations and theories imply and support certain structure
in the neural architecture of the visual cortex



%ER Applications

e Algorithms motivated by similar processing in
animals and humans:

— Hearing and sound classification
— Vision and identification of objects

e Text-independent robust speaker identification
— lIdentifying the speaker from the “music” of his voice

e Speaker-independent speech recognition
— ldentifying phonemes, vowels, words from their inherent sounds
¢ Ildentification of musical instruments (“timbre”)

Applications to acoustic signal recognition

— Fault identification in tools and wear prediction
— Ground vehicle identification from array microphones




% Joint DOA, Instrument ID, ?
ISR Note ID

d
Can we mimic and understand clavinet saxophonefiims 4 o hone
the ability of humans to do partial \ _
recognition of musical instruments piano

and DOA in a combined and
mutually enhancing fashion?

Human
Listener

e Combine the Stereausis model and its derivatives , with the
Auditory filtering multiscale VQ algorithms

e Using the cochlea, cortical, or combined spectra, perform
DOA on a “per frequency band basis”

e Combine portions of spectra according to DOA

e Use the multiscale classifier to ID portions of spectra
tagged by angle, as compared to stored vehicle spectra

e Repeat the cycle as the scenario evolves



% Acoustic Detection and
IMR  |dentification of Vehicles

Used and extended the two dimensional stereausis neural network
(Shamma et al). Uses as input processing the two cochlear filter banks

Measures binaural differences by detecting the spatial disparities
between the instantaneous outputs of two filter banks

The inhibition neural network computes effectively these differences
and articulates the harmonic peaks

Vehicle acoustics dominated by few low frequency harmonics

Our experiments show that identification based only on the main
diagonal spectrum gives only 52% correct classification. Thus additional
features are needed

Introduced a measure of the degree of association between the various
vehicle harmonics and modified the stereausis network to compute this
association by:

- Adding an envelope extractor immediately behind the filter banks

- Computed correlation with longer lags (than one)

- Allowed no-local (over frequency bands)correlations to be computed
between left-right inputs
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% Options in Applying WTSVQ
ISR to Acoustic Vehicle Classification

e GTSVAQ: A global tree-structured multi-resolution clustering
mechanism that mimics the aggressive and topological hearing
capabilities of biological systems. Here a global tree is built on
training data from all vehicles. New vehicle insertion problem.

e LVQ: A supervised learning neural network, LVQ achieves optimal
classification in the Bayes sense. It has the disadvantages of a
long search time and sensitivity to initial conditions.

e Parallel TSVQ (PTSVQ): build one (or more) trees for each vehicle.
It achieves a trade-off between GTSVQ and LVQ on classification
performance and search time. Easy new vehicle insertion.

e The following node allocation schemes are examined for PTSVQ:

— PTSVQ(1): Allocation based on sample a priori probability
— PTSVQ(2): Allocation based on equal distortion
— PTSVQ(3): Allocation according to vehicle speed
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% Leaf Node Entropies for
ISR PTSVQ Tree of Vehicle Type 8

cell entropy
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% Performance Comparisons 7
ISR among Options

classification rate v.s. tree size
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% WTSVQ in Multiscale s
ISR Cortical Model

* Experiments with
synthetically created
Date: 12-Doo-55, # o tost = 509 _ vowels using a
ey sinusoidal shape of the
vocal tract

* Shape parameters:
amplitude (p) and initial
phase (0) of the
sinusoid

*Vv,, V,: cartesian
coordinates for pair
(p,0)

Combine the wavelet representation of the “double transform” cortical
model with TSVQ to identify features revealed by resolutions



% WTSVQ in Multiscale
ISR Cortical Model

Auditory spectra
pitch: 120 Hz




% WTSVQ in Multiscale
ISR Cortical Model

Centroids of spectra
at different scales
pitch: 120Hz




% WTSVQ in Multiscale
ISR Cortical Model

Identification of
front, back and
subsets

of vowels from
synthetic database
pitch: 120 Hz
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% Dissimilarity Measures:
ISR Bregman Divergence

e Euclidean distance - most commonly used

- Nearest neighbor, k-means clustering, least squares regression,
PCA, distance metric learning, etc

e But...is it always appropriate? No!
- Nominal attributes (e.g. binary)
- Distances between distributions
- Need to handle numerical, logical, and even rule variables

e Probabilistic interpretation:
— Euclidean distance < Gaussian data

- Beyond Gaussian? Exponential family distributions <>Bregman
divergences

82



IR

Dissimilarity Measures:

Bregman Divergence

¢@

o) |/

> dgxy)

(x-y).VO(y)

O (y)

Y

y
¢ is strictly convex, differentiable

dg(x,y) = (x) — ¢(y) — (x —y,Vo(y))
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IR

Dissimilarity Measures: .
Bregman Divergence

e

Properties of Bregman Divergences

Not a metric (symmetry, triangle inequality do not hold)
Dy(x,y) > 0,and equals 0 iff x =y

Strictly convex in the first argument, but not convex (in general) in the
second argument

Three-point property generalizes the “Law of cosines”:
Dy(x,y) = Dy(z,y)+ Dy(x.2) — (x —2z) (Vo(y) — Vo(z))
Generalized Pythagoras Theorem:

Dy(x,y) > Dy(z,y)+ Dy(x,2)

where z is the “Bregman” projection onto the convex set (2. When )
is an affine set, then it holds with equality



% Dissimilarity Measures:
ISR Bregman Divergence

85

® ¢(x) = ||x||? is strictly convex and differentiable on R™

® dy(x,y) =|x—yl|* [squared Euclidean distance ]

® ¢(p) = E;.n:l p; log p; (negative entropy) is strictly convex and
differentiable on the m-simplex

® dy(p,q) =27 pjlog (z—j) [ KL-divergence ]

P op(x)=— Z;’;l log x; is strictly convex and differentiable on R”"

o dy(x,y)=>" (ﬂ — log (‘;—j) - 1) [ Itakura-Saito distance ]

=1 \ y;,



IR

Dissimilarity Measures:

Bregman Divergence

86

Bregman Divergences

Function Name &(x) dom ¢ Dy (25y)
Squared norm a2 (—00,400) 2 (a—y)?
Shannon entropy rlogx—ux [0,+0c) rlog £ —r+y
Bit entropy rlog x4 (1—2) log(1—2) [0.1] rlog £+ (1—x) log ==
Burg entropy — logx (0,40) Z _logZ-1
Hellinger — V122 [—1.1] (1—2y)(1—y2)~ /2 (1—22)1/2
¢, quasi-norm — 2P (0<p<1) [0,+00) — 2P 4payP ' —(p—1) yP
¢, NOrmM | [P (1<p<oc) | (—oo,400) ||z|P—pzsgny|y|P ' +(p—1)|y|?
Exponential exp x (—o00,+00) expr—(r—y+1)expy
Inverse 1/ (0,4+00) 1/ o+x/y2—2/y




%ISR Clustering

87

® Given: A set of objects

® Goal: Partition the set into clusters of similar objects




%ISR Clustering )

K-Means Clustering

® Given: A finite set X with weights 7, Vx € X, desired number of

clusters &
® Goal: Find clusters {X7,--- , X%} and cluster representatives
{1, -, i} that minimize
k
D > mxllx—
h=1 xEXh

® Properties
# Applicable to finite dimensional real vectors
® NP-complete problem for k& > 2

# Practical locally optimal solution: k-means algorithm



%ISR Clustering 89

K-Means Algorithm

® |Initialize {p,}%_,

® Repeat until convergence

» {Assignment Step } ’ *'
i i " 0
Assign x to &}, if " 0
h = argmin ||x— p,,||? 0*0
X Co
» { Re-estimation ste
{ p} ) %..
For all A 0

ZXEXh Tx X

er{‘t’h Tx

Ky, =

Mean is the best cluster representative !



%ISR Clustering

Clustering as Compression

® Original random variable X ~ 7, Vx € X

® Clustering determines
# clusters {X;, -, A}
o cluster representatives {pq,- -, .}

# cluster priors {7y, , 7}

® Compressed random variable X ~ Th, Vi, € {Hq,

...’“k}



%ISR Clustering 9]

Information-Theoretic Clustering (ITC)

® Given: Joint probability distribution p(X, YY) where X takes values in
a finite set X', desired number of clusters k

® Goal: Find clusters {7, --- , X} and compressed representation X
that minimize

I(X;Y)—I(X;Y)

® Properties
» Applicable to probability distributions
» NP-complete problem

#® Locally optimal solution exists



%ISR Clustering 92

Information Theoretic Clustering

®» Objective function

k
(X,Y)-1(X,Y) = 33 p@KLp|)lp(yY|h)

h=1xeX}

= D> > mKL(z(2)|p)

h=1xcX}

®» Alternate Formulation
» Represent each z € A by the discrete distribution z(x) = p(Y|x)
o Clusterthe set Z = {z(z) : x € A} based on KL-divergence
®» |ITC Algorithm
# [terative relocation similar to k-means
# Optimal assignment: closest in terms of KL-divergence

» Optimal cluster representative: mean distribution !



%ISR Clustering 93

A Closer Look

» K-means objective function:

k
Z ST mdx -l = 3 melx = pll? =S mlles — pll?
h=1

=1xcX} xEX
= wvar(X) —var(X)

where u is the global mean

® |TC objective function:

Z S mKLz@ ) = >SS p@) KLY ]2)llp(Y|h)

].XEXh h:lxek’h



%ISR Clustering 94

General Formulation ?

® Objective function for any distance measure:
Expected “distance” to cluster representatives = Loss in “information”

k
DD med(z,py) = 1(X) — I(X)
h=1xeX,

®» Main questions

# How is information I(-) related to distance d(-,-)?
» Will a simple iterative relocation algorithm work?

® |Is mean still the best cluster representative ?



%ISR Clustering 95

Bregman Information

® Theorem: For all Bregman divergences, mean is the best constant
predictor of a random variable and the best single representative for
a set of values

p = argmin E,[d, (X, c)] = argmin Z Txdy (X, C)
C C xEX

where p is the global mean

® Definition: The minimum loss is the Bregman information of X

I4(X) = Exlde(X, p)]



%ISR Clustering
Bregman Hard Clustering

® GCGiven: X ~ mx, x € X, desired number of clusters &

® Theorem: Expected Bregman divergence to cluster means equals
loss in Bregman information

k
SN medy(x, ) = Ip(X) — Ig(X)

h=1xe X},
® Goal: Find clusters { A&y, --- , A%}, cluster representatives
{4, , p } and compressed representation X that optimize

k

DD mdg(x, ) = I(X) — Iy(X)

h=1xeX}



%ISR Clustering
Bregman Hard Clustering Algorithm

® |Initialize {p;, }5_,

® Repeat until convergence

» { Assignment step }
Assign x to A, if
h = argmin d (X, )
h!

» { Re-estimation step}
For all A
ZXEXh Tx X

er/l’h Tx

Hp —
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%ISR Clustering

98

Properties

® Guarantee: Monotonically decreases objective function till
convergence

® Scalability: Every iteration is linear in the size of the input

® Exhaustiveness: If such an algorithm exists for a loss function
L(x, ), then L has to be a Bregman divergence

® Linear Separators: Clusters are separated by hyperplanes

» Mixed Data types: Allows appropriate Bregman divergence for
subsets of features



%ISR Clustering )

Exponential Families

Definition:A multivariate parametric family of distributions is called an
exponential family if the probability density function is of the form

Py,0(x) = exp{(x,0) — ¥(0) — A(x)}

® ) is the cumulant or log-partition function that uniquely determines a
family, e.g., Gaussian, multinomial, Poisson, etc.

® ¢ fixes a particular distribution in the family
® ) is a strictly convex function

Exponential families include most of the popular generative models



IR

100

Clustering

Bijection Theorem

Theorem: There is a bijection between exponential densities p(, ¢)(-) and
Bregman divergences ds(-, )

P(y,0)(X) = exp(—dg(x, 1)) f5(x),

® where ¢ and ¢ are Legendre duals and u = V4 (0), 6 = V()

® f,is auniquely determined function

d 0( X, ) |

Bregman

Divergence

SC w7 N e

Duality

————— J S

w P

Convex Cumulant Exponential
Function Function Family



%ISR Clustering

Bijection between BD and Exponential Family

Regular exponential families «— Regular Bregman divergences

Gaussian

— Squared Loss
Multinomial — KL-divergence
Geometric — ltakura-Saito distance
Poisson — |-divergence



%ISR Clustering
Bregman Soft Clustering

» Learning a mixture of exponential densities
» Maximum likelihood under incomplete information

# Solvable by Expectation Maximization (EM)

® Bijection theorem

Py,0() < exp(—dg(x, 1)) fo (%)
log-likelihood ++ negative Bregman divergence
maximum likelihood <» minimum Bregman divergence
EM for mixture of <« soft clustering for

exponential densities Bregman divergences



%ISR Clustering
Bregman Soft Clustering

® Given: X ~ mx, x € X and desired number of clusters &

® Goal: Find parameters © = {ry,, u,, }¥_, that maximize

k
L(O]X) =) mxlog (Z h exp(—d¢(x,uh)))
h=1

xcX

® Efficient Expectation Maximization is possible



%ISR Clustering

Bregman Soft Clustering Algorithm

® |Initialize {mp, pup, }5_,
®» Repeat until convergence

» { Expectation step }

For all x, A,
p(h|x) = mp exp(—dy (X, py,))/Z (%),

where Z(x) is the log-partition function
® { Maximization step }

For all h,
T o= Y mxp(hlx)

" _ ZXGX pr(hb{) X
" Zx pr(h‘X)




%ISR Clustering

Main Results: Clustering

®» Hard Clustering
» KMeans-type algorithm possible for any Bregman divergence

®» Hard Clustering «— Soft Clustering
# Bregman divergences < Exponential family distributions

® Soft Clustering
» Efficient learning of mixtures of exponential family distributions



% Clustering and
ISR Compression with BD

Compression Vs Loss in Bregman Information

® Theorem: Expected distortion = Loss in Bregman Information

Eldy(X, X)] = I4(X) — 1,(X)

® Rate distortion problem as a trade-off

min  [[(X;X) + 8E[dy(X.X)]] = min [I(X:X) — 31,(X)]
P(X]X) | p(X|X) |

® |Information Bottleneck is a special case

min [1(X; X ) — 31 (X 1Y)
pP(X]X)



% LVQ with BD:
ISR Gene Expression Microarrays
e High-throughput

experimental techniques vanttaton e exoression

that detect the expression e dota s ot
of thousands of genes in a

tissue simultaneously. ]

e Presence of DNA is 5 ™
detected by fluorescence _ :
following laser excitation..

Applications:

« Identification of functions for newly discovered sequences.

* Drug discovery and toxicology.

e  Mutation or single nucleotide polymorphism (SNP) detection
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%QR Comparison of Clustering Solutions
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% Self-Organizing Map
ISR SOM — Kohonen

* In the human cortex, multi-dimensional sensory input
spaces (e.g., visual input, tactile input) are represented by
two-dimensional maps.

« The projection from sensory inputs onto such maps is
topology conserving.

 This means that neighboring areas in these maps
represent neighboring areas in the sensory input space.

 For example, neighboring areas in the sensory cortex are
responsible for the arm and hand regions.



Self-Organizing Map
(SOM - Kohonen)

Common output-layer structures:

/ One-dimensional
oton \Cji%: % (completely interconnected

for determining "winner” unit)

O—O—0O—0O—0

OO ONO

Two-dimensional
(connections omitted,
only neighborhood
relations shown [green])

Neighborhood of neuron i




%ISR Kohonen Networks

SOM has a feed-forward structure with a single computational layer arranged in rows and

columns. Each neuron 1s fully connected to all the source nodes in the mput layer:

Computational layer

O O O O O Input layer

Clearly, a one dimensional map will just have a single row (or a single column) in the
computational layer.



%QR Kohonen Mapping

We have points x in the input space mapping to points I(x) in the output space:

N " -\ e .
£ Ll el ool ol el Yo'
. eature /S S/ ‘ j /
Continuous ~ o~ A K~
) ) ] N’Iap (b 'I\.-)‘ ------ 4}() ------- '\—: -------- '.\_J- ...... 1~E; ...... \ ) .......... !u........ij
High Dimensional ; iy , ,.
T — OO O s O e © e © et @ e O
l J{I }’A\u‘ {3 ,A' v () _,|"*:_. ....... Y
-/ W/ A \J
.............. OO0
U B - ./ v 9,
Discrete

Low Dimensional
Output Space

Each point 7 in the output space will map to a corresponding point w(Z) in the input space.



% Unsupervised Learning:
IR SOM Algorithm

 The operation of the algorithm is summarized as follows:

1. Initialization: Choose random values for the initial weight
vectors w;(0). The weight vectors must be different for all
neurons. Usually keep the magnitude of the weights small.

2. Sampling: Draw a sample x from the input space with a
certain probability; the vector X represents the activation
pattern that is applied to the lattice. The dimension of X is
equal to m.

3. Similarity Matching. Find the best-matching (winning) neuron
1(X) at time step n by using the minimum Euclidean distance
criterion:

« ix)=arg min; | | x—-w;] |, J=1,2,.../l



%ISR Summary of SOM Algorithm

4. Upaating: Adjust the synaptic weight vectors of all neurons
by using the update formula:

. w;(n+1) = w;(n) + n(N) hjio(N) (X(N) —w;(n))

Where n(n) is the learning rate and h;,,(n) is the
neighborhood function around the winner neuron i(X); both
n(n) and h,,(n) are varied dynamically for best results.

5. Continuation. Continue with step 2 until no noticeable
changes in the feature map are observed.



Z1sr ~ Overview of SOM Algorithm

We have a spatially continuous input space. n which our input vectors live. The aim is
to map from this to a low dimensional spatially discrere output space, the topology of
which 1s formed by arranging a set of neurons in a grid. Our SOM provides such a non-
linear transformation called a feature map.

The stages of the SOM algorithm can be summarised as follows:

1. Initialization — Choose random values for the mitial weight vectors w..

2

Sampling — Draw a sample training mput vector x from the input space.

I

Matching — Find the winning neuron /(x) with weight vector closest to iput vector.
4. Updating — Apply the weight update equation Awy; =1(7) T; 14(1) (x; —wj).

5. Continuation — keep returning to step 2 until the feature map stops changing.

T, 1) = XP(=S] 1y /207) (D) =Mgexp(=1/T;)
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J{ar  SOM followed by LVQ

Computation of the feature map can be viewed as the
first of two stages for adaptively solving a pattern
classification problem as shown below. The second
stage is provided by the learning vector quantization,
which provides a method for fine tuning of a feature
map. This is useful and typical for DNN

i
Input " . Class
Self-organising Learning vector-——
: , labels
feature map quantizer ,
s

|

Teacher



%QR Semantic Vector Spaces

Information Retrieval System

B

=

1. Docl
2. Doc2
3. Doc3




%ﬁ[{ Semantic Vector Spaces

The Vector-Space Model

« Assume 7 distinct terms remain after preprocessing;
call them index terms or the vocabulary.

e These “orthogonal” terms form a vector space.

Dimension = ¢ = [vocabulary|

 Each term, 7, in a document or query, j, 1s given a
real-valued weight, w,

 Both documents and queries are expressed as
f-dimensional vectors:

a} = (w 17 Wap e wg)



%ﬁ[{ Semantic Vector Spaces

Term Weights: Term Frequency

 More frequent terms 1in a document are more
important, 1.e. more indicative of the topic.

J,; = frequency of term 7 in document j

 May want to normalize rterm frequency (tf) by
dividing by the frequency of the most common
term 1n the document:

if; = 1 / max;{f;}



%ﬁ[{ Semantic Vector Spaces

Term Weights: Inverse Document Frequency

 Terms that appear in many different documents
are /ess indicative of overall topic.

df . = document frequency of term 7
= number of documents containing term i
idf; = inverse document frequency of term i,
= log, (N/ df))
(/V: total number of documents)
 An indication of a term’s discrimination power.

* Log used to dampen the effect relative to #/.



%ﬁ[{ Semantic Vector Spaces

TF-IDF Weighting

* A typical combined term importance indicator 1s
tf-idf weighting:
w, = zf,] idf, = zj; log, (N/ df,)
A term occurring frequently in the document but

rarely 1n the rest of the collection 1s given high
welght.

 Many other ways of determining term weights
have been proposed.

 Experimentally, #/-idf has been found to work well.



%ﬁ[{ Semantic Vector Spaces

Similarity Measure

A similarity measure 1s a function that computes
the degree of similarity between two vectors.

 Using a similarity measure between the query and
each document:

— It 1s possible to rank the retrieved documents 1n the
order of presumed relevance.

— It 1s possible to enforce a certain threshold so that the
size of the retrieved set can be controlled.



%ﬁ[{ Semantic Vector Spaces

Vector-Space (Distributional)
Lexical Semantics

» Represent word meanings as points (vectors)
in a (high-dimensional) Euclidian space.
* Dimensions encode aspects of the context in

which the word appears (e.g. how often it co-
occurs with another specific word).

— “You will know a word by the company that it
keeps.” (J.R. Firth, 1957)

* Semantic similarity defined as distance
between points 1n this semantic space.



%QR Semantic Vector Spaces

Other Feature Weights

e Replace TF-IDF with other feature
weights.

e Pointwise mutual information (PMI)
between target word, W, and the given
feature, f:

P(f,w)
P(f)p(w)

PMI(f,w) = log
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%ﬁ[{ Semantic Vector Spaces

Neural Word2Vec (Mikolov et al., 2013)

* Learn an “embedding” of words that supports effective
prediction of surrounding “skip gram” of words.

Input projection  output

w(t-2)
w(t-1)
w(t) —

w(t+1)

T N

w(t+2)



%QR Semantic Vector Spaces

Skip-Gram Word2Vec
Network Architecture

Input layer Projection layer Output layer
probabilities of
1-hot input vector embedding for w, context words
X ?\ —
X, @ ® : ?1
. L @ . .2
W, x W . |
LR [VIxd ¥ C axv oy, Y+l
5 e o :
Xv®_ ——— B - .
1X[V] . 1|V

1D MI®] The skip-gram model viewed as a network (Mikolov et al. 2013, Mikolov

et al. 2013a).
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%QR Semantic Vector Spaces

Word2Vec Math

» Softmax classifier predicts surrounding
words from a word embedding.

T
exp (ul v,
log p(o|c) = log — P (4, )
>, exp (uLoc)

» Train to maximize the probability of skip-
gram predictions.

T
IO)=73 S logp(wesfw)

t=1 —m<;j<m,j#0
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%ﬁ[{ Semantic Vector Spaces

Word Sense and Vector Semantics

» Having one vector per word 1gnores the impact of
homonymous senses.

» Similarity of ambiguous words violates the triangle

inequality.
club
AN

bat C association

C <A+B




%ﬁ[{ Semantic Vector Spaces

Vector-Space Word Meaning in Context

* Compute a semantic vector for an individual occurrence of
a word based on its context.

* Combine a standard vector for a word with vectors
representing the immediate context.

Compositional Vector Semantics

« Compute vector meanings of phrases and sentences by
combining (composing) the vector meanings of 1ts words.

« Simplest approach is to use vector addition or component-
wise multiplication to combine word vectors.

 Evaluate on human judgements of sentence-level semantic
similarity (semantic textual similarity, STS, SemEval
competition).



%ﬁ[{ Semantic Vector Spaces

Other Vector Semantics Computations

* Compute meanings of words by mathematically

combining meanings of other words (Mikolov, et al.,
2013)

—— R

- king = queen — femalé + male

WOMAN
/y AUNT

UNCLE
QUEEN

MAN

KING

 Evaluate on solving word analogies

— King 1s to queen as uncle 1s to ?




%ﬁ[{ Semantic Vector Spaces

Sentence-Level Neural Language Models

« “Skip-Thought Vectors™ (Kiros et al., NIPS 2015)

— Use LSTMs to encode whole sentences into lower-
dimensional vectors.

— Vectors trained to predict previous and next sentences.

S
F'Jim jumped E

N T
from the plane Encodel || Decoded [Yim landed
gnd LSTM | |y [ | LsT™ | Pnthe
lopened his g round.”
parachute.” C

T

0

R




%ISR Knowledge Graphs

Data as big graphs

-
S O
NS
/ O\
g ©

e

Program Flow/ Callgraphs

Yor197Tw Ypl249c

Image Data Chemical Structure Biological Network



%ISR Knowledge Graphs

Semantic Approaches

Propositional:

* “dog bites man” = bites(dog, man)

« bites(*,*) is a binary relation. man, dog are objects.
* Probabilities can be attached.

Vector representation:

« vec(“dog bites man”) = (0.2, -0.3, 1.5,...) € R"

« Sentences similar in meaning should be close to this
embedding (e.g. use human judgments)
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%QR Knowledge Graphs

Propositional Semantics

Allow logical inferences “Socrates is a man,” + “all men are
mortal” - “Socrates is mortal”

Important for inference in well-defined domains, e.g.
inferring gene regulation from medical journals.

Big Mechanism” project

journal I raacing suggested model
articles l_'> text | [ > | shallow and with models > e

Gene Ontology . .
Reactome entities, relations, ——— ::> assemm}f
Pathway Commons evenis, processes
etc ... [ ] Ix‘\ | |
reasonin | model manager .
. . 9 <'1:| 9 <'1:| revised models
predict, explain, test,

curate, etc.

From “DARPA'’s Big Mechanism program” Paul R Cohen, Phys. Biol. 12 (2015)



%ISR Knowledge Graphs

Need to Integrate Semantic Vector Space Models
and Knowledge Graphs (Hypergraphs) Models

@ Convert the h-hop neighborhood of each node u in G into a multi-
dimensional vector Rg(u)={(u’, w (u’))}, based on the distance of neighbor
nodes u’ from u.

d{u,u’) ) < B
’EL-‘HI:H-::] . {ﬂ :d(u!u } — h".-

0. k otherwise.

Distance between u and u’

Previous Applications of Information Propagation:

Information Propagation Semi-supervised Learning [Al’ 08], Concept
Propagation [CIKM ’06]




% Summary: Multiresolution and
IR Progressive Learning Clustering

136

Feedback
A 4 A 4
=>Multlresolutlon=> Nonlinear
Preprocessor Features

Learning Clustering
Postprocessor

Class

e Address both the hierarchical organization of signal databases and

progressive classification:

~ Combine a multiresolution preprocessor with

a learning clustering postprocessor

- Feedback is also an option

e Resulting algorithms proved to have some “universal” qualities

e Found analogs of such algorithms in animals and humans:

- Hearing and sound classification

- Vision and identification of objects by humans

e Most promising mathematical formulation of the problem:

combined compression and classification for general signals



%QR Summary, Current Work

Progressive Machine Learning, Knowledge “Compaction”, Human-Robot Collaboration

PI"OQI’GSSiVG'V Acquire @nd Compact Information

Human-Robot
Collaboration

Sensor Input  E— > New Information Redundant Information »| Discard
Compacted Knowledge:
Knowledge Base “Purity” of Information
Build Invariance Features
\ A /
Knowledge
Update “Compaction”




%FSR Summary, Current Work

How do humans learn?

Progressive Understanding Symmetries and / Knowledge compaction \
attention Invariant Features

Rehearsal

Working Long-Term
Memory Memory

Retrieval

By Atkinson & Shiffrin
Forgotten

Can recognize (e.g. faces) Do not memorize

Visual cortex processes

images in multi-scale fashi(y using only few samples \ every new sample /




%QR Summary, Current Work

Proposed Universal Machine Learning Architecture

Feedback#3: Mother Wavelet — Sensitivity Analysis

Feedback#2: Nonlinear Mapping — Group Symmetries

Feedback#1: LVQ

/ Low

~ !l
Resolution Group-Invariant -
Features _
Sensor v
—»I : | Group-Invariant | _
Input Wavelets { Features Function
Decomposition Approximation
-

v ¥ 3Ybyy iy

“[:] Group-Invariant | )
High Features
resolution X )
U X

Az

-

. NimE Hierarchical
Multi-Resolution Nonlinear Features

Learning-Clustering
Analysis / Module




%FSR Summary, Current Work

Multi-Scale Directional Wavelets & L1 Norm
in Image Classification

|z * a1 g

B (Wi = (o) = 0@ ), op(u) = 27 ¥6(2 )} 7T

| % g2 g x * 1) Stable to deformations /!
x « 1) Translation Covariant /

. ams ',
: /L§ | * 1has [ l|x % 9||1 = [ |x *x ¥|du Translation Invariant
_ | .

Ji . . . .
27 B |x x 10| * ¢ invariant to translations << 2/

_ - Group-Invariant
Features

Mallat et. al., “Scattering Networks”, ...



%FSR Summary, Current Work

Learning Vector Quantization

« Non-Parametric — No Model Errors . .
Hierarchical Structure

1
Initial random weights \// j
- A . Y ‘/
S
A
{ >
el

Z = training data= {( y,.d, )} hei
Voronoi vectors =@ ={0,,0,,...,6,} —»
decisions= 1d,, .d,,,A ,d,, |

0,(n+1) = 0.(n) - @, Vo p (O0c(n), ;) if dy= dy,
0,(n+1) = 0.(n) +0,V o p (8,(n), y;) if d % dy,

Baras and LaVigna, Convergence of LVQ, 1990




%QR Summary, Current Work

Dissimilarity Measures:
Bregman Divergences

Bounding the Error Probabilities using Hueffding’s Inequality T
Dy(x,y) = p(x) — ¢(y) — (x —y) " Vely)
. o real-valued, strictly convex

Pry < e—2nD?(p1||po)/c®

o ¢(z) = ||| is strictly convex and differentiable on R™,

U(x) Dyizgy = llz = ylI* [squared Euclidean distance|
/ o O(p) = Z:’.":l p; log p; is strictly convex and differentiable on the m-
' simplex,
/ DeN) Dypq) = 2ie1 Ps log ‘Z—J’ [Unnormalized Kullback-Leibler Divergence|
-
U(x
>"/’ VU (o) o If 5700 p; = 1, then ¢(p) becomes the negative entropy and Dy, is
the KL-divergence
X0 X1 X
—p [ Unnormalized Kullback-Leibler Divergence between K-vectors
K K
Can handle vectors of: 5(a,b)=D(al[b)- > b(k)+ 3 a(k)
. . k=1 k=1
i) Numerical values . b & .
i) Logical values :Zb(k)]og(—k)—z.b(k)wtz:a(k)
iii) Rule values i alk) = =




%FSR Summary, Current Work

Applications for sound sensing and understanding

Data

Vehicle Classification Using Acoustic ' '
T

Y. T
Figure 1: Schematic of the situation:
two heavy vehicles go around a track while their
acoustic signature is recorded by an array of
microphones.

Musical Instrument Classification w é ,% H ’“‘ H ’\"
) o bzl QORONNNY

Robot Navigation using Sound Signals _‘}'

’
’
——__/

[1] Baras, et.al. , Vehicle Classification Using Acoustic Data Based on Biology Hearing Models r and Multiscale Vector Quantization
[2] Shammai, Encoding Sound Timbre in the Auditory System



%FSR Summary, Current Work

Applications for vision sensing and understanding

P g
#\ . Face Recognition
>

Task-Driven Scene Understanding
(find the cup)

T Attention Mechanism
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Summary, Current Work

IR

Applications in Human-Robot Collaboration
Learning by demonstration with safety constraints

Cost-oriented obstacle avoidance

Learned Task
Human-Oriented

Obstacle avoidance

' Robot System :
Task Specification —:D' = :
] 5 4 ]
¢ o |
' Movement Imitation :
3 L} |
: Imitation v
. I Trajectory :
Demonstrations 1 1
1 ]
| - ]
T -
) Updated :
- . g '
]
—_— -
L i
Movement Adaptatiar Rewards - .
(Planning) Lisntiio ' Self-Assessment:
el ELrrl EEETETETE ' S— | Ask Feedback from User
Trajectory, /
Perception | B | TEEE TR ceeeeseens > k
-
Robot User
Execution Feedback Baras et. al., Co-active learning to adapt Humanoid Movement for manipulation




%QR Summary, Current Work

Universality of LVQ & SOM Sound Sensing and Understanding:
Comparison with the State of the Art

Advantages of Bregman Divergences % Vision sensing and understanding:

Comparison with the State of the Art

R Y ot Mapping to existing Deep Architectures: q- Attention mechanisms in ground UAV
I8 |L_ TR Universality of the proposed architecture collaborative navigation

Foundation of Information (‘knowledge’) :':w L] , | o SI;EJ en:ggrﬁ?]boi;C;’;La}bolﬁj[é?ﬂa];okrs S
Compaction and Progressive Learning e . g purat 4



%L'JR Future Directions and Significance

Implement architecture in hybrid (analog and digital) chips -- Cortex
on a chip

Current competition for DNN chips - We are looking for the bigger
challenge:

Same architecture combines computing and storage as in the brains of
higher level animals and humans - brain like computers

True departure form von-Neumann architectures that separate
memory and CPU hardware

“von Neumann bottleneck” -- severely limits the applications of
artificial intelligence systems

In contrast, signals are processed in neurobiological networks via
trillions of synapses with integrated logic and memory functions in a
massively parallel mode. And the synapses are constantly modified in
a parallel learning process to automatically optimize and
simultaneously develop new functions in the networks.
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%L'JR Future Directions and Significance

e Plan to introduce recent innovation of synaptic resistors based on ion-
doped polymer composites loaded with carbon nanotube -- opens a
new opportunity to emulate neurobiological networks with parallel
signal processing and learning capabilities

e Integrate Semantic Vector Space Models and Knowledge Graph
Models and use them for progressive knowledge compaction and
hardware implementations

e Our architecture enhanced with such synapses can lead to a scaled-up
neuromorphic network that can circumvent the curse of
dimensionality to process and learn from huge data sets with speed,
power efficiency, and memory capacity exponentially superior to
those of Si-based computing circuits.

e Looking to implement a cortex on a chip for sound processing and
demonstrate it in 3 yrs from now
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