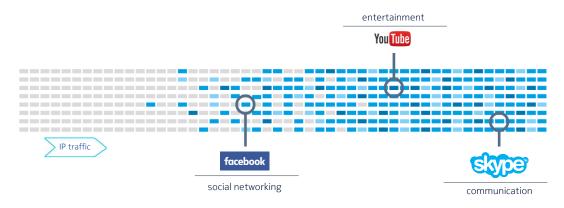


Nokia Networks


Building network intelligence – Traffic classification

Marios Bougioukos, Ph.D.
 16-01-2017

What Traffic Classification stands for?

A key role for Intelligent Networks and Network Management

 $\circ~$ Is the identification and categorization of the traffic mixture present in IP-based networks

Intelligence

- Helps to understand the network applications behavior
- Enables network service-awareness
- o Provides network with intelligence

optimized resource utilization bandwidth management better usage of existing

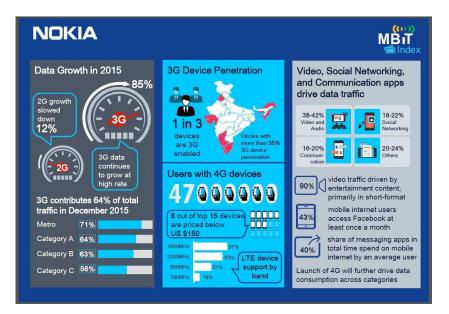
infrastructure

Management

Traffic Classification

Capacity and benefits

- o Service-differentiation
 - each type of service can be handled in a more "personal" way
 - Quality of Service (QoS) improvement
 - Quality of Experience (QoE) improvement


- Network design and engineering
 - better bandwidth management
 - optimization by tuning some network parameters
 - offloading some unimportant application traffic
- o Research
 - to imitate the real traffic of applications in the network
 - study and understand the behavior of different applications
- study and understand

- o Advertising
 - statistics for marketing purposes
 - data analytics
- o Security
 - malicious traffic detection
 - prohibited sites or contents
- o Accounting
 - charging differentiation
 - user specific charging policy

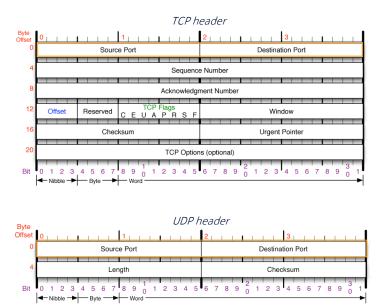
Mobile data traffic

Dominant in the Global Internet traffic

Figure:

- 3G data continued to grow at high rate (85% YoY) and now contributes more than 50% of data traffic across categories of circles
- Mobile traffic is driven by consumption of Video, Social Networking, and Communication related content, all of which combined contribute 90% of mobile traffic

should focus on the Mobile Internet traffic, which will dominate the Global Internet traffic

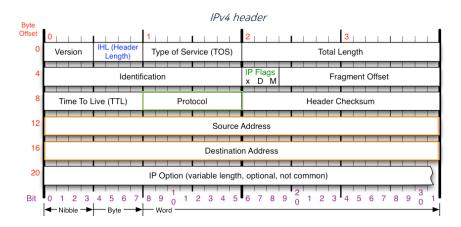


Traffic Classification approaches (1)

Port-based method

- o The first and the simplest one
- Examines the IP packet in the transport layer (Layer-4) for wellknown source/destination ports as these assigned to the IANA

Assigned Port	Application
20	FTP Data
21	FTP Control
22	SSH
23	Telnet
25	SMTP
53	DNS
80	HTTP
110	POP3
123	NTP
161	SNMP
3724	WoW



- Other transport protocols: SCTP and DCCP
- o Problems exist for dynamic ports or abuse of well-known ports
- o Only basic applications (client-to-server-like) can be identified

Traffic Classification approaches (2)

IP-based method

- Follows the same approach as the port-based technique
- Examines the IP packet in the network layer (Layer-3) for well-known source/destination IP addresses
- Periodic updates should be applied in order to maintain this technique accurate

- o A combination of the port-based and IP-based method is the service-based method
- A service is defined as a triplet <IP, Port, Protocol> assigned to a specific application, ex. Skype <134.170.16.141, 2007, 17>
- A database of all these services is created in an off-line phase using a dataset of labeled flows and is used in turn for real-time classification

Traffic Classification approaches (3)

Payload-based method

- Inspection of the packet payload (Layer-7) searching for unique application signatures (pattern matching)
- This method also called Deep Packet Inspection (DPI) technique
- Most effort focuses on the identification of P2P applications because they use camouflage strategies (abuse of well-known ports)

P2P Protocol	String	Trans. prot.	Def. ports		
eDonkey2000	0xe319010000	TCP/UDP	4661 - 4665		
	0xc53f010000				
Fasttrack	"Get /.hash"	TCP	1214		
	0x27000002980	UDP			
BitTorrent	"0x13Bit"	TCP	6881 - 6889		
Gnutella	"GNUT", "GIV"	TCP	6346-6347		
	"GND"	UDP			
MP2P	GO!!, MD5, SIZ0x20	TCP	41170 UDP		
Direct Connect	"\$MyN","\$Dir"	TCP	411-412		
	"\$SR"	UDP			
Ares	"GET hash:"	TCP	-		
	"Get sha1:"				

Patterns extracted from well-known P2P applications

Advantages:

1. High accurate

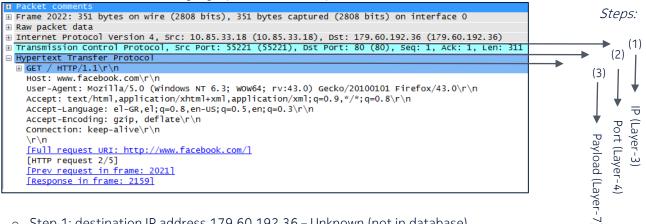
2. Successful with application using random ports (P2P) and tunneled traffic

Disadvantages:

1. High resource requirements for the pattern searching

2. Encrypted traffic limitation

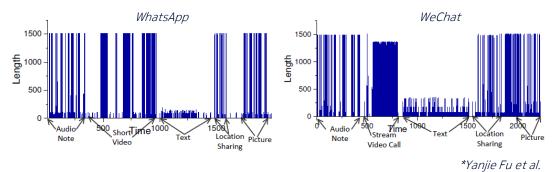
3. Continuous update (signatures must be kept up-to-date)


* Karagiannis et al.

Traffic Classification approaches (4)

A Traffic Classification example

Outgoing IP packet (Wireshark capture)

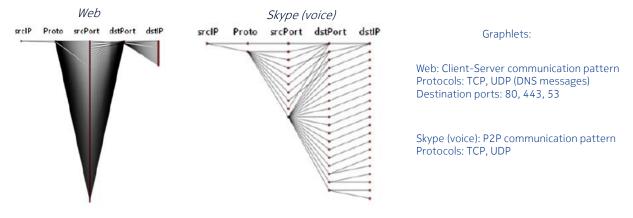


- Step 1: destination IP address 179.60.192.36 Unknown (not in database) 0
 - Not satisfied I want to find the protocol
 - Let's go deeper!
- Step 2: destination port 80 HTTP application (Web access)
 - Not satisfied I want to find the host
 - Let's go deeper!
- Step 3: host-name www.facebook.com Facebook site (create metadata)
 - Yest

Traffic Classification approaches (5)

Statistic-based method

- Uses statistical characteristics from network traffic such as:
 - distribution of packet size
 - packet inter-arrival time
 - number of traffic
 - traffic rate
- Advantage of identifying traffic type without packet inspection. Encrypted data are also covered



- Service-type identification instead of specific mobile application type
- Network conditions and high bit error rates may affect the accuracy of the classification results

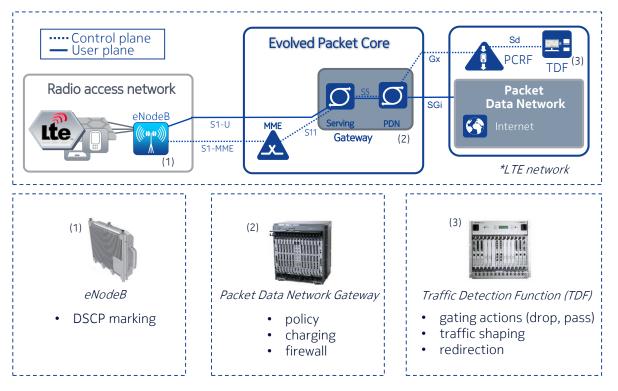
Traffic Classification approaches (6)

Host behavior-based method

- Uses communication patterns or causality of application traffic extracted from network and transport layers
- Identification of mobile applications and certain traffic categories (Web, P2P) since they use constant and unique characteristics

*Mongkolluksamee et al.

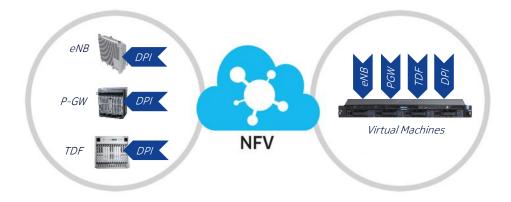
o Requires periodic updates to adapt the classification model to new applications


Deep Packet Inspection Tools

Off-the-shelf solutions

- Deep Packet Inspection (DPI) is considered as the most accurate traffic classification method
- o DPI actually includes all the aforementioned classification methods
- o PACE (https://www.ipoque.com/products/dpi-engine-rsrpace-2)
 - classifies over 95% of network traffic
 - up to 9 Gbps per core
 - · identification of 2800 application and protocols
 - Bitrate, latency, aspect ratio and other approaches
- Qosmos (<u>http://www.qosmos.com/</u>)
 - recognizes over 97% of network traffic
 - covers over 2000 protocols and applications
 - real-time traffic analysis at 10, 40 or 100 Gbps
 - methods include application metadata, behavioral and statistical analysis, etc.
- o nDPI (<u>http://www.ntop.org/</u>)
 - supports more than 100 protocols and applications
 - analysis of session certificates
 - open source

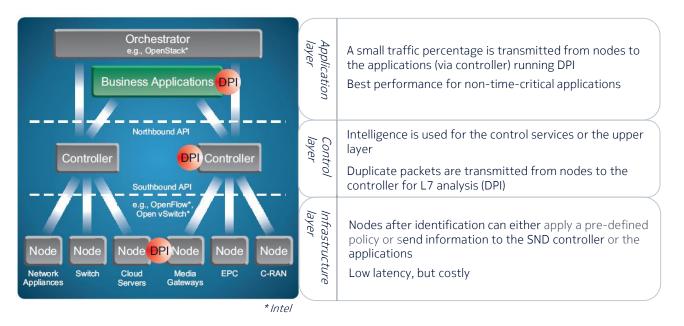
Locating DPI functionality in Mobile Networks


Modules performing traffic analysis and policy

Realizing DPI functionality in the SDN world (1)

The advantage of NFV technology

- DPI is implemented in several and different network devices
- High cost to implement DPI technology many times
- Different classification methods may lead to different results


- With SDN and NFV, DPI can become a shared function
- Low cost since DPI is implemented in fewer devices
- Easier application interconnection, easy to apply a consistent format for metadata

Realizing DPI functionality in the SDN world (2)

Locating DPI in the SDN layers

- With SDN approach DPI information and therefore network intelligence is shared through the network
- o Lowers CPU and energy costs as application recognition is performed once

Realizing DPI functionality in the SDN world (3)

L7 information using OpenFlow protocol

- Currently, SDN has L2-4 visibility. For computed metadata per flow between nodes and SDN controller new L7 fields are required
- OpenFlow protocol must be enhanced to support L7 intelligence

Rule Action Statistics 1 Extend flow to include application data, as shown below: In VLAN Ethernet IP TCP Application Port ID SA DA Type SA DA Protocol Src port Dst port Metadata1 Metadata2 2 Add actions, such as: 1. Forward packets to ports 2. Encapsulate and forward to controller 3. Drop the packet 4. Send to normal processing pipeline 3 Add new categories of statistics, such as computed metadata	OpenFlow Flow Table Entry									
In Port VLAN ID Ethernet IP TCP Application 2 Add actions, such as: 1. Forward packets to ports 2. Encapsulate and forward to controller 3. Drop the packet 4. Send to normal processing pipeline IP TCP Application	Rule 1 Action 2 Statistics 3									
Port ID SA DA Type SA DA Protocol Src port Dst port Metadata1 Metadata2 Add actions, such as: 1. Forward packets to ports 2. Encapsulate and forward to controller 3. Drop the packet 4. Send to normal processing pipeline	Extend flow to include application data, as shown below:									
 Add actions, such as: 1. Forward packets to ports 2. Encapsulate and forward to controller 3. Drop the packet 4. Send to normal processing pipeline 										

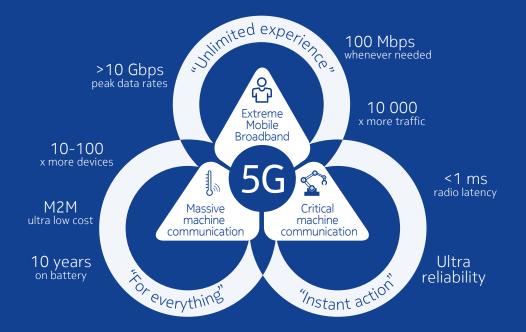
* Market Education Committee (MEC) of Open Networking Foundation (ONF)

- Rules: identifications of protocol, applications (App ID), and metadata
- Actions: such as drop the packet, encapsulate and forward the packet to the controller, of forward packet to specific port
- Statistics: including computed metadata, HTTP-host name, HTTP cookie, and vendor-specific attributes (VSA)

In the IoT world

The role of Traffic Classification

- IoT environment accommodates complex traffic due to sophisticated applications
- New or enhanced data protocols will be emerged (ex: MQTT, CoAP, AMQP, Websocket, Node)
- More personal devices connected, more personal data possible available to nonauthorized users
- Several services require special handling (ex eHealth tools)


>>>>

Real-time traffic classification is the wheel for a safe, qualitative and well-functioning IP-based future

5G era

Heterogeneous use cases – diverse requirements

More Information In our web sites

o Latest Launches

https://networks.nokia.com/latest-launches

Research Publications

https://www.bell-labs.com/our-research/publications/

• Technology Vision

http://networks.nokia.com/innovation/technology-vision

o 5G

http://networks.nokia.com/innovation/5g

Thank you - Connect with us - Any Questions?

CONTACT

Location 1: Agisilaou 6-8, 15123 Marousi Location 2: 14klm. National Road Athens-Lam Switchboard.: 210 6253008 Fax: 210 6206002 Web address: http://careers.networks.nokia.com/ E-mail: tc.athens@nokia.com

SOCIAL MEDIA

https://www.facebook.com/nokiaglobalcareers https://twitter.com/nokianetworks https://linkedin.com/company/nokia f
 f
 in

networks.nokia.com

